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A scientific and technological 
effort to identify 

•  Methods for obtaining coherent behavior from 
the cooperation of vast numbers of unreliable 
parts, that are interconnected in unknown, 
irregular, and time-varying ways 
–  Organizational principles 
–  Algorithms 
–  Programming models 
–  Compilation technology targeted to appropriate 

substrates 
•  New computing substrates, both from 

traditional silicon technology and from 
molecular biology 





Why is this interesting? 
•  Physically feasible at any scale 
•  Forces robustness of design 
•  Potentially extremely inexpensive 
•  Provides the possibility of bulk computation 

–  smart paints 
–  smart gels 
–  concrete by the Megaflops 
–  vast sensor networks 

•  Our programming models run out when there are too 
many elements to program individually, or even to 
name. 



"It is unlikely that we could construct automata of a 
much higher complexity than the ones we now have, 
without possessing a very advanced and subtle theory 
of automata and information.  This intellectual 
inadequacy certainly prevents us from getting much 
farther than we are now...A simple manifestation of 
this factor is our present relation to error checking... 
With our artificial automata we are moving much more 
in the dark than nature appears to be with its 
organisms.  We are, and apparently, at least at 
present, have to be much more `scared' by the 
occurrence of an isolated error and by the malfunction 
which must be behind it. Our behavior is clearly that of 
overcaution, generated by ignorance.“ 
-- John von Neumann (1948) 



Example of an Amorphous 
Computing Medium 

An amorphous medium has independent computational 
particles, all identically programmed.  Each particle is 
represented by a spot in the picture, and different states 
are shown by different colors. 



Our amorphous computing model 
•  Computing elements sprinkled on a 

surface or in a volume 
•  Too many to individually program or 

even to name 
•  Each talks to a few neighbors, but not 

reliably 
•  Not synchronous, nor regularly 

arranged 



where 

Kleinrock and Silvester (1977) 

Crude local coordinate systems can be constructed 
by intersecting countdown waves radiating from 

several loci. 



How can we program amorphous 
stuff? 

•  We can look to biology for organizational 
metaphors, although we need not try to 
duplicate actual biological mechanisms 

•  We’ll take examples from pattern 
formation to illustrate the point, and 
produce cartoon caricatures of biological 
morphogenesis 



Bifurcating Tubes: an example of emergent 
behavior 

This is an amorphous physical simulation of a weak membrane 
bounding a pressure vessel.  When a bulge appears, the membrane 
thins and the bulge expands. (by Radhika Nagpal) 



Suppose we wanted to make something 
with a precisely specified geometry? 

from Frank Netter 

Atlas of Human Anatomy  



Differentiation 

To make a “spine”, the elements in an initial polarized tube 
must differentiate into bands of alternating C and D type 
segments.  



Local SIMD paradigm for programming 
differentiation and growth (Weiss) 

•  Each computing element’s state includes some 
binary markers.  Each computing element’s program 
has many independent rules.   
•  Rules are triggered when messages are received.  
A rule is applicable if a certain boolean combination 
of markers is satisfied. 
•  When a rule is applied it may set markers and send 
further messages. 
•  Messages have hop counts that determine how far 
they will diffuse. 
•  Markers may have lifetimes after which they expire. 



 condition 
 actions 

 message 

 A program for creating segments: 
(start 
 Crest 
 ((send (make-seg C 1) 3))) 

((make-seg seg-type seg-index) 
 (and Tube (not C) (not D)) 
 ((set seg-type) 
  (set seg-index) 
  (send created 3))) 

(((make-seg) (= 0)) 
 Tube 
 ((set Bottom))) 

(((make-seg) (> 0)) 
 Tube 
 ((unset Bottom))) 

Microbial Colony Language (MCL): Ron Weiss 

(created 
 (or C D) 
 ((set Waiting 10))) 

(*  
 (and Bottom C 1 (Waiting (= 0))) 
 ((send (make-seg D 1) 3))) 

(*  
 (and Bottom D 1 (Waiting (= 0))) 
 ((send (make-seg C 2) 3))) 

(*  
 (and Bottom C 2 (Waiting (= 0))) 
 ((send (make-seg D 2) 3))) 

(*  
 (and Bottom D 2 (Waiting (= 0))) 
 ((send (make-seg C 3) 3))) 



Deleting Hox genes in mice 

from Wolpert, Principles of Development, 
Oxford University Press, 2002, p. 124 



A botanical metaphor for pattern 
generation:  (Daniel Coore) 

Organize the process in terms of “growing points.”   

Growing points are abstract structures that exhibit 
“tropisms” toward particular “chemical gradients.” 

The growing points may lay down materials.  

Materials may secrete pheromones that attract or 
repel other growing points.  

Growing points may split, die off, or join.  

Support for this abstraction may be programmed as a 
uniform state machine in each computational particle. 



Start with “Vdd”, “Vss”, and a “Poly” 
Contact 



The poly contact sprouts a growing point that 
bifurcates and then grows toward the 

pheromones secreted  by Vdd and Vss. 



When the growing poly gets close to Vdd and 
Vss it is stopped by a short-range inhibition 



The poly growing points die off, but first they 
sprout P and N transistor diffusion growing 

points, which grow toward Vdd and Vss, where 
they drop contacts. 



The diffusions also grow toward each other.  
When they hit they form a new poly contact and 

poly growing point. 



The process then repeats, growing the next 
inverter. 



This process repeats to make an arbitrarily long 

chain of ugly, but topologically correct inverters. 

This demonstrates totally local control of precision topology. 



The growing points provide a serial locus of 
control, even though the implementation is in 

terms of a uniform state machine in each 
computational particle 

(define-growing-point ((poly from-input-contact) Q-id) 
  (material poly) 
  (tropism constant Vdd-long Vss-long) 
  (initialize lifetime 5) 
  (secrete (poly-short inhibitor) Q-id) 
  (when (= lifetime 0) 
   (start-growing-point (poly up) Q-id) 
   (start-growing-point (poly down) Q-id) 
   (terminate))) 



Capabilities of GPL 



Robustness and regeneration  

Newt 

Starfish Hydra 

from Wolpert, Principles of Development, 
Oxford University Press, 2002, pp. 447, 450 



Active gradients and self-repairing lines 
Lauren Clement and Radhika Nagpal 
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Self-repairing line 



Languages for programmable materials 
(Nagpal, 2001) 

An amorphous sheet of programmable cells folds 
itself to form prespecified shapes 



Programmable  Cell sheet 

  Irregularly 
shaped cells 

Randomly and densely distributed cells 



Inspiration: Epithelial cell tissues 

Cell Model by Odell et al. 

apical                                   purse-string  
                                                contraction 

basal 

fibers 



Programmable cells 



Biologically-inspired primitives 

Gradients 
1


2

3


Tropism                        Bounded


locus of

 control




More biologically-inspired 
primitives 

•  Seepthru 

•  Flexible Folding 

•  Polarity Induction 

cell-to-cell 

   contact


==> new nbrhood


apical


apical


induced




Folding a cell sheet 



Origami 
•  Origami as a constructive shape language  

•  Huzita's Axioms of Origami [1989] 

   sequence of

  straight flat folds


(1) fold-lbp
 (2) fold-p2p


(4) fold-l2self
 (5) fold-p2l


(3) fold-l2l


(6) fold-pp2ll




Approach 

Global Shape

   Program


compiled

 Cell Program


Programmable 

  Cell Sheet


autonomous 

flexible cell 


executed




Implementing the axioms 

p1 

p2 

p1 

locus of 
 control 

[Coore, 99] 

A1: (crease-lbp p1 p2) 

A2:(crease-p2p p1 p2) 

p1 
p2 

p1 

p2 



GPL-like code for axiom 2 



Origami-based formation of global shape 
from biologically-inspired local interactions 

•  An language for self assembling predetermined 
global shape from a sheet of identically-programmed 
flexible autonomous cells 

•  A means of compiling that language into programs 
for the cells, using biologically-inspired primitives 



Origami Shape Language 
 Origami Cup Program 
(define d1 (fold-p2p c3 c1)) 
(define-region front(c3 d1)) 
(define-region back (c1 d1)) 
(execute-fold d1 apical mark=c3) 

(define d2 (fold-l2l e23 d1)) 
(define p1 (intersect d2 e34)) 
(define d3 (fold-p2p c2 p1)) 
(execute-fold d3 apical mark=c2) 

c1


c3


d1


(define p2 (intersect d3 e23)) 
(define d4 (fold-p2p c4 p2)) 
(execute-fold d4 apical mark=c4) 

(define l1 (fold-lbp p1 p2)) 
(within-region front 
 (execute-fold l1 apicl mark=c3)) 
(within-region back 
 (execute-fold l1 basal mark=c1)) 

p1


e23


d1


d2


c3
 c2


d3
p1


c4


p2


d4


c3

c1


l1

p1


p2




Cup Example: 1 
       Origami Cup Program 

(define d1 (fold-p2p c1 c3 "green")) 
(define-region front(c3 d1)) 
(define-region back (c1 d1)) 
(execute-fold d1 apical landmark=c3) 



Cup Example:2 

(define d2 (fold-l2l e23 d1 "cyan")) 
(define p1 (intersect d2 e34)) 
(define d3 (fold-p2p c2 p1 "magenta")) 
(execute-fold d3 apical landmark=c2) 



Cup Example:3 

(define p2 (intersect d3 e23)) 
(define d4 (fold-p2p c4 p2 "magenta")) 
(execute-fold d4 apical landmark=c4) 



Cup Example:4 

(define l1 (fold-lbp p1 p2 "yellow")) 
(within-region front 
  (execute-fold l1 apical landmark=c3)) 
(within-region back 
  (execute-fold l1 basal landmark=c1)) 

unfold




Examples: Origami Shapes 

CUP


Samurai Hat


Rouge Container


Airplane


Puzzle




The origami shape language is 
well-suited for amorphous systems  

•  Wide variety of predetermined global shapes, with 
only local communication and local computation 

•  Local rules are automatically derived 
•  Small set of biologically-inspired primitives 
•  Robust in the face of irregular cell placement, 

asynchronous cells, random cell death, etc 
•  Programs are scale independent 



Programs are scale independent 

Same shape at different scales 
Program remains same, irrespective of number of cells 

8000 2000 4000 

pattern  scales  with number of cells 



Similar programs produce 
homologous structures 

Ridley (1997) Evolution 



Cells as a programming substrate 

= 
C 

C A 

B 

D gene 

gene 

gene 

A 
B 

C 
D 

NAND NOT 

Biochemical Logic circuit 

Environment


sensors actuators 



Vision 

•  A new substrate for engineering: living 
cells 
–  interface to the chemical world 
– cell as a factory / robot 
– possible biomedical applications 

Challenge: engineer complex, predictable 
behavior 



Programming Cells 

plasmid = “user program” 

•  Compile logic circuits into 
pieces of DNA that encode 
genetic regulatory networks 

•  Logic signals are 
represented as 
concentrations of   proteins 
(mRNA) 

•  Action of the genetic 
regulatory network in a 
living cell implements the 
desired logic function 



Biochemical Inverter 

signal = concentration of specific proteins (mRNA) 
computation = regulated protein synthesis + decay 



mRNA 

A More In-Depth Model of the 
Inverter: I 

promoter 

translation 

transcription 

RNAp 

ribosome 

protein 



from Becker, Reece, and Poenie, The World of the Cell, 
Benjamin/Cummings, 1996, p. 559 



A More In-Depth Model of the 
Inverter: II 

promoter 

translation 

transcription 

RNAp 

mRNA 
ribosome 

protein 

operator 

repressor 
protein 



Inducers 

•  Use as a logical Implies gate:                 (NOT R) OR 
I 

operator promoter gene 

RNAP 

active 
repressor 

operator promoter gene 

RNAP 

inactive 
repressor 

inducer no transcription transcription 

Repressor 
Inducer Output 



BioCircuit Computer-Aided 
Design 

SPICE BioSPICE 

steady state dynamics intercellular 

•  BioSPICE: a prototype biocircuit CAD tool 
–  simulates protein and chemical concentrations 
–  intracellular circuits, intercellular communication 
–  single cells, small cell aggregates 



“Proof of Concept” Circuits 

•  Work in BioSPICE simulations [Weiss, Homsy, Nagpal, 1998] 
•  They work in vivo  

–  Flip-flop [Gardner & Collins, 2000],  Ring oscillator [Elowitz & Leibler, 2000] 
•  Models poorly predict their behavior 

time (x100 sec) 

[A] 

[C] 

[B] 

B _ 
S 

_ 
R 

A 

_ 
[R] 

[B] 

_ 
[S] 

[A] 

time (x100 sec) 

time (x100 sec) 

RS-Latch (“flip-flop”) Ring oscillator 



Measurements of a Ring Oscillator 

[Elowitz & Leibler, 2000] 



Genetic Process Engineering 
(Ron Weiss) 

modify 
RBS 

mutate 
operator 



BioBricks: Future Data Book for 
Cellular Robotics? 

(Randy Rettberg and Tom Knight) 

BB Device Number Description 
*BBa D0001  Base Plasmid for Structured 

Assembly 
BBa D0001  Inverter 
*BBa D0002  Inverter 
*BBa D0003  Inverter 
*BBa D0004  Inverter 
*BBa D0001  Green Fluorescence Output 
*BBa D0002  Cyan Fluorescence Output 
*BBa D0003  Yellow Fluorescence Output 

… … 



Putting it all together? 

Origami Shape Language 
(Nagpal) 

Low-level languages (e.g. MCL) 

Genetic Circuit 

Growing Point Language 
(Coore) 

Robust 
gradients? 



The Challenge of Amorphous 
Computing 

•  To reliably obtain a desired behavior by 
engineering the cooperation of myriads of 
computing elements, without assuming 
any precision interconnect or precision 
geometrical arrangement of the elements.    

•  To invent the computational substrates 
that can support this kind of engineering 



The Old-fashioned Way 



The Amorphous Way 



END 



Chemical mechanism for inverter 



Intercellular Communications 
•  Certain inducers useful for communications: 

1.  A cell produces inducer 
2.  Inducer diffuses outside the cell 
3.  Inducer enters another cell 
4.  Inducer interacts with repressor/activator  change 

signal 

(1) (2) (3) (4) 

main 
metabolism 



Logic Circuits based on Inverters 

•  Proteins are the wires/signals 
•  Promoter + decay implement the gates 
•  NAND gate is a universal logic element: 

–  any (finite) digital circuit can be built! 

X 

Y 

R1 Z 

R1 

R1 X 

Y 

Z = 
gene 

gene 

gene 

NAND NOT 


