
 AMORPHOUS AND
CELLULAR COMPUTING

Hal Abelson
Jake Beal
Lauren Clement
Chris Hanson
Attila Kondacs
Tom Knight

Radhika Nagpal
Randy Rettberg
Erik Rauch
Gerald Jay Sussman
Ron Weiss

A scientific and technological
effort to identify

•  Methods for obtaining coherent behavior from
the cooperation of vast numbers of unreliable
parts, that are interconnected in unknown,
irregular, and time-varying ways
–  Organizational principles
–  Algorithms
–  Programming models
–  Compilation technology targeted to appropriate

substrates
•  New computing substrates, both from

traditional silicon technology and from
molecular biology

Why is this interesting?
•  Physically feasible at any scale
•  Forces robustness of design
•  Potentially extremely inexpensive
•  Provides the possibility of bulk computation

–  smart paints
–  smart gels
–  concrete by the Megaflops
–  vast sensor networks

•  Our programming models run out when there are too
many elements to program individually, or even to
name.

"It is unlikely that we could construct automata of a
much higher complexity than the ones we now have,
without possessing a very advanced and subtle theory
of automata and information. This intellectual
inadequacy certainly prevents us from getting much
farther than we are now...A simple manifestation of
this factor is our present relation to error checking...
With our artificial automata we are moving much more
in the dark than nature appears to be with its
organisms. We are, and apparently, at least at
present, have to be much more `scared' by the
occurrence of an isolated error and by the malfunction
which must be behind it. Our behavior is clearly that of
overcaution, generated by ignorance.“
-- John von Neumann (1948)

Example of an Amorphous
Computing Medium

An amorphous medium has independent computational
particles, all identically programmed. Each particle is
represented by a spot in the picture, and different states
are shown by different colors.

Our amorphous computing model
•  Computing elements sprinkled on a

surface or in a volume
•  Too many to individually program or

even to name
•  Each talks to a few neighbors, but not

reliably
•  Not synchronous, nor regularly

arranged

where

Kleinrock and Silvester (1977)

Crude local coordinate systems can be constructed
by intersecting countdown waves radiating from

several loci.

How can we program amorphous
stuff?

•  We can look to biology for organizational
metaphors, although we need not try to
duplicate actual biological mechanisms

•  We’ll take examples from pattern
formation to illustrate the point, and
produce cartoon caricatures of biological
morphogenesis

Bifurcating Tubes: an example of emergent
behavior

This is an amorphous physical simulation of a weak membrane
bounding a pressure vessel. When a bulge appears, the membrane
thins and the bulge expands. (by Radhika Nagpal)

Suppose we wanted to make something
with a precisely specified geometry?

from Frank Netter

Atlas of Human Anatomy

Differentiation

To make a “spine”, the elements in an initial polarized tube
must differentiate into bands of alternating C and D type
segments.

Local SIMD paradigm for programming
differentiation and growth (Weiss)

•  Each computing element’s state includes some
binary markers. Each computing element’s program
has many independent rules.
•  Rules are triggered when messages are received.
A rule is applicable if a certain boolean combination
of markers is satisfied.
•  When a rule is applied it may set markers and send
further messages.
•  Messages have hop counts that determine how far
they will diffuse.
•  Markers may have lifetimes after which they expire.

 condition
 actions

 message

 A program for creating segments:
(start
 Crest
 ((send (make-seg C 1) 3)))

((make-seg seg-type seg-index)
 (and Tube (not C) (not D))
 ((set seg-type)
 (set seg-index)
 (send created 3)))

(((make-seg) (= 0))
 Tube
 ((set Bottom)))

(((make-seg) (> 0))
 Tube
 ((unset Bottom)))

Microbial Colony Language (MCL): Ron Weiss

(created
 (or C D)
 ((set Waiting 10)))

(*
 (and Bottom C 1 (Waiting (= 0)))
 ((send (make-seg D 1) 3)))

(*
 (and Bottom D 1 (Waiting (= 0)))
 ((send (make-seg C 2) 3)))

(*
 (and Bottom C 2 (Waiting (= 0)))
 ((send (make-seg D 2) 3)))

(*
 (and Bottom D 2 (Waiting (= 0)))
 ((send (make-seg C 3) 3)))

Deleting Hox genes in mice

from Wolpert, Principles of Development,
Oxford University Press, 2002, p. 124

A botanical metaphor for pattern
generation: (Daniel Coore)

Organize the process in terms of “growing points.”

Growing points are abstract structures that exhibit
“tropisms” toward particular “chemical gradients.”

The growing points may lay down materials.

Materials may secrete pheromones that attract or
repel other growing points.

Growing points may split, die off, or join.

Support for this abstraction may be programmed as a
uniform state machine in each computational particle.

Start with “Vdd”, “Vss”, and a “Poly”
Contact

The poly contact sprouts a growing point that
bifurcates and then grows toward the

pheromones secreted by Vdd and Vss.

When the growing poly gets close to Vdd and
Vss it is stopped by a short-range inhibition

The poly growing points die off, but first they
sprout P and N transistor diffusion growing

points, which grow toward Vdd and Vss, where
they drop contacts.

The diffusions also grow toward each other.
When they hit they form a new poly contact and

poly growing point.

The process then repeats, growing the next
inverter.

This process repeats to make an arbitrarily long

chain of ugly, but topologically correct inverters.

This demonstrates totally local control of precision topology.

The growing points provide a serial locus of
control, even though the implementation is in

terms of a uniform state machine in each
computational particle

(define-growing-point ((poly from-input-contact) Q-id)
 (material poly)
 (tropism constant Vdd-long Vss-long)
 (initialize lifetime 5)
 (secrete (poly-short inhibitor) Q-id)
 (when (= lifetime 0)
 (start-growing-point (poly up) Q-id)
 (start-growing-point (poly down) Q-id)
 (terminate)))

Capabilities of GPL

Robustness and regeneration

Newt

Starfish Hydra

from Wolpert, Principles of Development,
Oxford University Press, 2002, pp. 447, 450

Active gradients and self-repairing lines
Lauren Clement and Radhika Nagpal

10

10

9

9
10

10

10

9

9
10

10

10

9
9

9
10

9

9 9

9

9

10

10

9
9

9
10

9

9 9 X
X

9

9

10

10

9
9

9
10

9

9

9

10

10

9
9

9
10

9

9

9
8

8

8

9

9
10

8

8

8

7

7

7

9

9
10

8

8

8

7

7

7

6

6

5

5

6

6

5

4

9

9
10

8

8

8

7

7

7

6

6

5

5

6

6

5

4

9

9
10

8

8

8

7

7

7

6

6

5

5

6

6

5

4

9

9
10

8

8

8

7

7

7

6

6

5

5

6

6

5

4

9

9
10

8

8

8

7

7

7

6

6

5

5

6

6

5

4

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4
?

?

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4
?

?

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4
?

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4
?

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4

?

9

9
10

8

8

8

7

7

7

6

5

5

6

6

5

4

Self-repairing line

Languages for programmable materials
(Nagpal, 2001)

An amorphous sheet of programmable cells folds
itself to form prespecified shapes

Programmable Cell sheet

 Irregularly
shaped cells

Randomly and densely distributed cells

Inspiration: Epithelial cell tissues

Cell Model by Odell et al.

apical purse-string
 contraction

basal

fibers

Programmable cells

Biologically-inspired primitives

Gradients
1

2

3

Tropism Bounded

locus of

 control

More biologically-inspired
primitives

•  Seepthru

•  Flexible Folding

•  Polarity Induction

cell-to-cell

 contact

==> new nbrhood

apical

apical

induced

Folding a cell sheet

Origami
•  Origami as a constructive shape language

•  Huzita's Axioms of Origami [1989]

 sequence of

 straight flat folds

(1) fold-lbp
 (2) fold-p2p

(4) fold-l2self
 (5) fold-p2l

(3) fold-l2l

(6) fold-pp2ll

Approach

Global Shape

 Program

compiled

 Cell Program

Programmable

 Cell Sheet

autonomous

flexible cell

executed

Implementing the axioms

p1

p2

p1

locus of
 control

[Coore, 99]

A1: (crease-lbp p1 p2)

A2:(crease-p2p p1 p2)

p1
p2

p1

p2

GPL-like code for axiom 2

Origami-based formation of global shape
from biologically-inspired local interactions

•  An language for self assembling predetermined
global shape from a sheet of identically-programmed
flexible autonomous cells

•  A means of compiling that language into programs
for the cells, using biologically-inspired primitives

Origami Shape Language
 Origami Cup Program
(define d1 (fold-p2p c3 c1))
(define-region front(c3 d1))
(define-region back (c1 d1))
(execute-fold d1 apical mark=c3)

(define d2 (fold-l2l e23 d1))
(define p1 (intersect d2 e34))
(define d3 (fold-p2p c2 p1))
(execute-fold d3 apical mark=c2)

c1

c3

d1

(define p2 (intersect d3 e23))
(define d4 (fold-p2p c4 p2))
(execute-fold d4 apical mark=c4)

(define l1 (fold-lbp p1 p2))
(within-region front
 (execute-fold l1 apicl mark=c3))
(within-region back
 (execute-fold l1 basal mark=c1))

p1

e23

d1

d2

c3
 c2

d3
p1

c4

p2

d4

c3

c1

l1

p1

p2

Cup Example: 1
 Origami Cup Program

(define d1 (fold-p2p c1 c3 "green"))
(define-region front(c3 d1))
(define-region back (c1 d1))
(execute-fold d1 apical landmark=c3)

Cup Example:2

(define d2 (fold-l2l e23 d1 "cyan"))
(define p1 (intersect d2 e34))
(define d3 (fold-p2p c2 p1 "magenta"))
(execute-fold d3 apical landmark=c2)

Cup Example:3

(define p2 (intersect d3 e23))
(define d4 (fold-p2p c4 p2 "magenta"))
(execute-fold d4 apical landmark=c4)

Cup Example:4

(define l1 (fold-lbp p1 p2 "yellow"))
(within-region front
 (execute-fold l1 apical landmark=c3))
(within-region back
 (execute-fold l1 basal landmark=c1))

unfold

Examples: Origami Shapes

CUP

Samurai Hat

Rouge Container

Airplane

Puzzle

The origami shape language is
well-suited for amorphous systems

•  Wide variety of predetermined global shapes, with
only local communication and local computation

•  Local rules are automatically derived
•  Small set of biologically-inspired primitives
•  Robust in the face of irregular cell placement,

asynchronous cells, random cell death, etc
•  Programs are scale independent

Programs are scale independent

Same shape at different scales
Program remains same, irrespective of number of cells

8000 2000 4000

pattern scales with number of cells

Similar programs produce
homologous structures

Ridley (1997) Evolution

Cells as a programming substrate

=
C

C A

B

D gene

gene

gene

A
B

C
D

NAND NOT

Biochemical Logic circuit

Environment

sensors actuators

Vision

•  A new substrate for engineering: living
cells
–  interface to the chemical world
– cell as a factory / robot
– possible biomedical applications

Challenge: engineer complex, predictable
behavior

Programming Cells

plasmid = “user program”

•  Compile logic circuits into
pieces of DNA that encode
genetic regulatory networks

•  Logic signals are
represented as
concentrations of proteins
(mRNA)

•  Action of the genetic
regulatory network in a
living cell implements the
desired logic function

Biochemical Inverter

signal = concentration of specific proteins (mRNA)
computation = regulated protein synthesis + decay

mRNA

A More In-Depth Model of the
Inverter: I

promoter

translation

transcription

RNAp

ribosome

protein

from Becker, Reece, and Poenie, The World of the Cell,
Benjamin/Cummings, 1996, p. 559

A More In-Depth Model of the
Inverter: II

promoter

translation

transcription

RNAp

mRNA
ribosome

protein

operator

repressor
protein

Inducers

•  Use as a logical Implies gate: (NOT R) OR
I

operator promoter gene

RNAP

active
repressor

operator promoter gene

RNAP

inactive
repressor

inducer no transcription transcription

Repressor
Inducer Output

BioCircuit Computer-Aided
Design

SPICE BioSPICE

steady state dynamics intercellular

•  BioSPICE: a prototype biocircuit CAD tool
–  simulates protein and chemical concentrations
–  intracellular circuits, intercellular communication
–  single cells, small cell aggregates

“Proof of Concept” Circuits

•  Work in BioSPICE simulations [Weiss, Homsy, Nagpal, 1998]
•  They work in vivo

–  Flip-flop [Gardner & Collins, 2000], Ring oscillator [Elowitz & Leibler, 2000]
•  Models poorly predict their behavior

time (x100 sec)

[A]

[C]

[B]

B _
S

_
R

A

_
[R]

[B]

_
[S]

[A]

time (x100 sec)

time (x100 sec)

RS-Latch (“flip-flop”) Ring oscillator

Measurements of a Ring Oscillator

[Elowitz & Leibler, 2000]

Genetic Process Engineering
(Ron Weiss)

modify
RBS

mutate
operator

BioBricks: Future Data Book for
Cellular Robotics?

(Randy Rettberg and Tom Knight)

BB Device Number Description
*BBa D0001 Base Plasmid for Structured

Assembly
BBa D0001 Inverter
*BBa D0002 Inverter
*BBa D0003 Inverter
*BBa D0004 Inverter
*BBa D0001 Green Fluorescence Output
*BBa D0002 Cyan Fluorescence Output
*BBa D0003 Yellow Fluorescence Output

… …

Putting it all together?

Origami Shape Language
(Nagpal)

Low-level languages (e.g. MCL)

Genetic Circuit

Growing Point Language
(Coore)

Robust
gradients?

The Challenge of Amorphous
Computing

•  To reliably obtain a desired behavior by
engineering the cooperation of myriads of
computing elements, without assuming
any precision interconnect or precision
geometrical arrangement of the elements.

•  To invent the computational substrates
that can support this kind of engineering

The Old-fashioned Way

The Amorphous Way

END

Chemical mechanism for inverter

Intercellular Communications
•  Certain inducers useful for communications:

1.  A cell produces inducer
2.  Inducer diffuses outside the cell
3.  Inducer enters another cell
4.  Inducer interacts with repressor/activator  change

signal

(1) (2) (3) (4)

main
metabolism

Logic Circuits based on Inverters

•  Proteins are the wires/signals
•  Promoter + decay implement the gates
•  NAND gate is a universal logic element:

–  any (finite) digital circuit can be built!

X

Y

R1 Z

R1

R1 X

Y

Z =
gene

gene

gene

NAND NOT

