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Data Analysis = Information Extraction

Data is the only connection between us and the realty.

All our information is contained in the data.

Data analysis is the means to extract information form the data.

Data analysis is mechanical; result interpretation is the key to yield 
information.

Unless we have clear understanding of the underlying processes, data 
analysis should not be based on a priori basis methods.

Adaptive basis is the best approach to extract the maximum amount 
information.

Hilbert-Huang Transform (HHT) is based on an adaptive approach.
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The Main Data Analysis Tasks

Distribution: global properties limited to homogeneous population only; 
HHT can help extract component with homogeneous scale.

Filtering: mostly Fourier based in frequency space; HHT is a nonlinear 
time scale based filter.

Regression: fit data to an a priori functional; HHT fits adaptively with 
spline.

Correlation: need to detrend; HHT offers adaptive detrend.

Spectral Analysis: time-frequency representation; HHT for data from 
nonlinear and nonstationary processes.

Prediction: stationary processes; HHT could help here too by provide 
band-limited components fro easier prediction.
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History of HHT
1998: The Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series 

Analysis,  Proc. Roy. Soc. London, A454, 903-995.
The invention of the basic method of EMD, and Hilbert transform for determining the Instantaneous 
Frequency and energy.

1999: A New View of Nonlinear Water Waves – The Hilbert Spectrum, Ann. Rev. Fluid Mech. 31, 417-457.
Introduction of the intermittence in EMD decomposition. 

2003:  A confidence Limit for the Empirical mode decomposition and the Hilbert spectral analysis, Proc. of 
Roy. Soc. London, A459, 2317-2345.
Establishment of a confidence limit without the ergodic assumption.  

2004: A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method, Proc. 
Roy. Soc. London, A465, 1597-1611.
Defined statistical significance and predictability for IMF from EMD. 

2005: On Instantaneous Frequency, Proc. Roy. Soc. London, (Under review)
Removal of the limitations posted by  Bedrosian and Nuttall theorems for Instantaneous Frequency 
computations.

2005: Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method. 
Proc. Roy. Soc. London, (Under review)
Made EMD totally adaptive without subjective intermittence criteria.

2005:  On the Trend and Detrend and Variability for nonstationary and nonlinear data. Proc. Roy. Soc. 
London, (Under review)
Determining the trend adaptively without a priori functional form.
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My Prejudice
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Motivations

Physical processes are mostly nonstationary

Physical Processes are mostly nonlinear

Data from observations are invariably too short

Physical processes are mostly non-repeatable.  

∪ Ensemble mean impossible, and temporal mean 
might not be meaningful for lack of ergodicity. 
Traditional methods inadequate.
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Available Data Analysis Methods
for Nonstationary (but Linear) time 
series

Various probability distributions
Spectral analysis and Spectrogram
Wavelet Analysis
Wigner-Ville Distributions
Empirical Orthogonal Functions aka Singular 
Spectral Analysis
Moving means
Successive differentiations
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Available Data Analysis Methods
for Nonlinear (but Stationary and 
Deterministic) time series

Phase space method
• Delay reconstruction and embedding
• Poincaré surface of section
• Self-similarity, attractor geometry & 

fractals

Nonlinear Prediction

Lyapunov Exponents for stability
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Characteristics of Data from 
Nonlinear Processes
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Duffing Pendulum
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Hilbert Transform : Definition
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Hilbert Transform Fit
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The Traditional View of  the 
Hilbert Transform 
for Data Analysis
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Traditional View
a la Hahn  (1995)  : Data LOD
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Traditional View
a la Hahn  (1995) : Hilbert
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Traditional View
a la Hahn  (1995) : Phase Angle
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Traditional View
a la Hahn  (1995) : Phase Angle Details
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Traditional View
a la Hahn  (1995)  : Frequency
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Why the traditional 
view does not work?
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Hilbert Transform a cos + b : Data
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Hilbert Transform a cos + b : 
Phase Diagram



10/19/2005 22

Hilbert Transform a cos + b : 
Phase Angle Details
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Hilbert Transform a cos + b : 
Frequency
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The Empirical Mode 
Decomposition Method 
and Hilbert Spectral 
Analysis

Sifting
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Empirical Mode Decomposition: 
Methodology : Test Data
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Empirical Mode Decomposition: 
Methodology : data and m1
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Empirical Mode Decomposition: 
Methodology : data & h1



10/19/2005 28

Empirical Mode Decomposition: 
Methodology : h1 & m2
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Empirical Mode Decomposition: 
Methodology : h3 & m4
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Empirical Mode Decomposition: 
Methodology : h4 & m5
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Empirical Mode Decomposition
Sifting : to get one IMF component
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Two Stoppage Criteria : S and SD

A. The S number :  S is defined as the  consecutive 
number of siftings, in which the numbers of zero-
crossing and  extrema are the same for these S 
siftings.

B.   SD is small than a pre-set value, where
2T
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Empirical Mode Decomposition: 
Methodology : IMF c1
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Definition of the Intrinsic Mode 
Function (IMF)

Any function having the same numbers of
zero cros sin gs and extrema ,and also having
symmetric envelopes defined by local max ima
and min ima respectively is defined as an
Intrinsic Mode Function ( IMF ).

All IMF enjoys good Hilbert Transfo
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Empirical Mode Decomposition
Sifting : to get all the IMF components
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Empirical Mode Decomposition: 
Methodology : data & r1
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Empirical Mode Decomposition: 
Methodology : IMFs
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Definition of Instantaneous 
Frequency
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Definitions of Frequency
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Comparison between FFT and HHT
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Comparisons: 
Fourier, Hilbert & Wavelet
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Speech Analysis
Hello : Data
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Four comparsions D
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An Example of Sifting
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Length Of Day Data
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LOD :  IMF
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Orthogonality Check

Pair-wise % 

0.0003
0.0001
0.0215
0.0117
0.0022
0.0031
0.0026
0.0083
0.0042
0.0369
0.0400

Overall % 

0.0452
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LOD : Data & c12
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LOD : Data & Sum c11-12
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LOD : Data & sum c10-12
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LOD : Data & c9 - 12
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LOD : Data & c8 - 12
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LOD : Detailed Data and Sum c8-c12
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LOD : Data & c7 - 12
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LOD : Detail Data and Sum IMF c7-c12
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LOD : Difference Data – sum all IMFs
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Traditional View
a la Hahn  (1995) : Hilbert
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Mean Annual Cycle & Envelope: 9 
CEI Cases
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Hilbert’s View on 
Nonlinear Data
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Duffing Type Wave
Data: x = cos(wt+0.3 sin2wt)
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Duffing Type Wave
Perturbation Expansion
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Duffing Type Wave
Wavelet Spectrum
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Duffing Type Wave
Hilbert Spectrum
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Duffing Type Wave
Marginal Spectra
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Duffing Equation
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Duffing Equation : Data
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Duffing Equation : IMFs
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Duffing Equation : IMFs
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Duffing Equation : Hilbert Spectrum
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Duffing Equation : Detailed Hilbert Spectrum
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Duffing Equation : Wavelet Spectrum
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Duffing Equation : Hilbert & Wavelet Spectra
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What This Means

Instantaneous Frequency offers a total 
different view for nonlinear data: 
instantaneous frequency with no need for 
harmonics and unlimited by uncertainty.

Adaptive basis is indispensable for 
nonstationary and nonlinear data analysis

HHT establishes a new paradigm of data 
analysis
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The Idea and the need of 
Instantaneous Frequency
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According to the classic wave theory, the wave conservation 
law is based on a gradually changing φ(x,t) such that

Therefore, both wave number and frequency must have 
instantaneous values.
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The Idea and the need of 
Instantaneous Frequency
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According to the classic wave theory, there are other more 
important wave conservation laws for Energy and Action:

Therefore, if frequency is a function of time, it has to 
satisfy certain condition for both laws to be valid.
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Prevailing Views

The term, Instantaneous Frequency, should be 
banished forever from the dictionary of the 
communication engineer.

J. Shekel, 1953

The uncertainty principle makes the concept of an 
Instantaneous Frequency impossible.

K. Gröchennig, 2001
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Comparisons

noyesyesHarmonics

yesdiscrete : no
continuous: yes

noFeature 
extraction

yesyesnoNon-stationary

yesnonoNonlinear 

Energy-time-
frequency

Energy-time-
frequency

Energy-
frequency

Presentation

Differentiation:
Local

Convolution: 
Regional

Convolution: 
Global

Frequency

Adaptivea prioria prioriBasis

HilbertWaveletFourier
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Current Applications

Non-destructive Evaluation for Structural Health Monitoring 
(DOT, NSWC, and DFRC/NASA, KSC/NASA Shuttle)

Vibration, speech, and acoustic signal analyses
(FBI, MIT, and DARPA)

Earthquake Engineering
(DOT)

Bio-medical applications
(Harvard, UCSD, Johns Hopkins, and Southampton, UK)

Global Primary Productivity Evolution map from LandSat data 
(NASA Goddard, NOAA)

Cosmological Gravitational Wave  and Planets hunting
(NASA Goddard, and Nicholas Copernicus University, Poland)

Financial market data analysis
(NASA and HKUST)
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Example 1.
Structure Damping Studies

US Navy Submarine Structure:
Damping determined by one impact 
load for all the frequency responses
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Calibration:  Numerical Simulation of 
High Modal Density Transient System 
Response
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quadrature Q(t) modulation components
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Determine Decay Rates for Simulation 
Data
Using Hilbert Damping Spectrum

Hilbert Damping df=0.25MHz

Theoretical Curve         
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2D Frame Impact Point Time Series
Baseline Frame vs Two Types of 
Diagonals
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Loss Factor for Empty Frame 
and Bead-Filled Frame

Empty frame  

Bead−filled  

Modal (empty)

Modal (bead) 
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Loss Factor for Two Different 
Frame Construction Options
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Example 2.
Speech Analysis

Comparisons among Different methods:
1. The Fourier Spectrograms Narrow band (Top 

left) and wideband (Top right)
2. The Wavelet Analysis (Bottom left)
3. The Hilbert Spectral Analysis (Bottom right)

Notice the details of the Hilbert Spectrum
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Speech Analysis
Hello : Data
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Four comparsions D
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Four Comparisons DD
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Example 3.
Earthquake Analysis

Chi-Chi earthquake data.  Notice the difference between the 
Fourier and Hilbert Spectral Analysis:

1. Fourier under-represents energy of the low frequency 
range for lack of resolution.

2. Fourier over-represents of the high frequency range for 
the spurious harmonics.

3. Difference the largest in East-West component, which is 
the most nonlinear and nonstationary; smallest in 
vertical, which is the most stationary.
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Chi-Chi Earthquake : Data
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Chi-Chi Earthquake : East-West
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Chi-Chi Earthquake : North-
South
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Chi-Chi Earthquake : Vertical
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Example 4.
Removal of Satellite Orbit Drifts

For the first time, HHT correction of the orbit 
drifts enables us to construct a uniform long 
time sequence of the global primary 
productivity data from 6 different Satellite.
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NDVI Maximum Value Composites

8-km output bin from 4-km spatial resolution data at subpoint 

All orbits, all data processed, equal area map projection

Scan Angle Restriction to +/- 40 degrees
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AVHRR analyses require Solar zenith angle 
correction
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EMD processing
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EMD Median Trend
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GIMMS DataGIMMS Data

original dataoriginal data

EMD corrected dataEMD corrected data

differencedifference
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Example 5.
HHT Extract Climate Information

HHT enable us to extract the influence 
of El Nino on the annual cycle of the 
Earth rotating speed (as reflected in the 
length-of-day) data.

Each peak in the envelope represent an 
El Nino events.
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LOD Data
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IMF :  Mean  CEI  9 cases
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IMF :  STD  CEI  9 cases
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Mean Annual Cycle & Envelope: 9 
CEI Cases
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Example 6.
Bridge Damage Detection

HHT detected the frequency shift of the pier 
vibration from 1.6 Hz to 1.2 Hz, which gives a 
ratio of 4:3.  In terms of stiffness, the pier has 
suffered a ratio of 16:9 stiffness lost

The Fourier spectral analysis show no difference in 
Frequency shift.
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A Bridge in Taiwan: 
Notice the exposed piles
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How do the bridges in US fare?
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HsinNan Bridge : A sketch
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Data : Hsin Nan Bridge Span 1 Vertical
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Data : Hsin Nan Bridge Span 2 Vertical
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Data : Hsin Nan Bridge Piers 1 & 2
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Hilbert Spectrum : 
Hsin Nan Bridge Pier 1 Vertical
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Hilbert Spectrum : 
Hsin Nan Bridge Pier 2 Vertical
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Marginal Hilbert & Fourier Spectra : 
Hsin Nan Bridge Piers 1 & 2 Vertical
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Example 7.
Airfoil Flutter Study

The aeroelasticity flight program to push the 
airfoil to the breaking point.  HHT clearly identify 
the yield of the airfoil just before the final 
disintegration of the airfoil. 

Fourier totally missed the critical change.
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Location of the Test Wing
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Details of the test wing
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Airfoil Flutter
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Full Data : atw_f5_m83h10_1 Details
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Mean Hilbert Spectrum : y(i)
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Mean Hilbert and Spectrogram : y83
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Instantaneous frequency and data 
Envelope
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Example 8. 
Molecular Dynamics and New 
Drug Discovery

Work done at University of 
Southampton by Professor Jonathan 
Essex for new Drug searches
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Proteins

Polymers built from 20 monomer units

Important in all living processes

Structural hierarchy:
Primary – sequence
Secondary – helix or sheet
Tertiary – collection of secondary structure
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Experimental Methods

Timescales for these motions are at least of 
the order of microseconds

Experimental methods unable to probe details 
of conformational changes
- NMR, X-ray crystallography, CD

Use molecular dynamics simulations to probe 
protein dynamics
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Molecular Dynamics

Empirical force field to model 
interactions

Solve Newton’s equations of motion 
using finite difference approach

Time step, δt, very small (10-15 s)
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DHFR
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Signal Analysis of MD

Why?
Simplify simulation results to aid 
interpretation
Determine frequencies of important 
vibrations

Fourier transforms

Time domain filtering using non-recursive 
digital filters
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HHT & Dihedral Change

Characterise spontaneous 
conformational change
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HHT & Dihedral Change
Characterise spontaneous 
conformational change

Integral of HHT spectrum in 0 – 10 
cm-1 region also shown
Note correlations
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Outstanding Mathematical 
Problems

1.Adaptive data analysis methodology in general
2.Nonlinear system identification methods
3.Prediction problem for nonstationary processes 

(end effects)
4.Optimization problem (the best IMF selection 

and uniqueness.  Is there a unique solution?)
5.Spline problem (best spline implement of HHT, 

convergence and 2-D)
6.Approximation problem (Hilbert transform 

and quadrature)


