
The Tradeoffs of Large Scale

Machine Learning

Léon Bottou

NEC Laboratories America

Summary

I. Machine Learning Redux.

II. Machine Learning and Optimization.

III. Stochastic Algorithms.

ML Redux: The Experimental Paradigm

Variations: k-fold cross-validation, etc.

This is the main driver for progress in machine learning.

ML Redux: Mathematical Statement (i)

• Assumption

Examples are drawn independently from

an unknown probability distribution P (x, y)

that represents the laws of Nature.

• Loss Function

Function ℓ(ŷ, y) measures the cost

of answering ŷ when the true answer is y.

• Expected Risk

We seek to find the function f∗ that minimizes:

min
f

E(f) =

∫

ℓ(f(x), y) dP (x, y)

Note: The test set error is an approximation of the expected risk.

ML Redux: Mathematical Statement (ii)

• Approximation

Not feasible to search f∗ among all functions.

Instead, we search f∗F that minimizes the Expected Risk E(f)

within some richly parametrized family of functions F .

• Estimation

Not feasible to minimize the expectation E(f)

because P (x, y) is unknown.

Instead, we search fn that minimizes the Empirical Risk En(f),

that is, the average loss over the training set examples.

min
f∈F

En(f) =
1

n

n
∑

i=1

ℓ(f(xi), yi)

In other words, we optimize a surrogate problem!

The Statistical Problem

E(fn)− E(f∗) =
(

E(f∗F)− E(f∗)
)

Approximation Error

+
(

E(fn)− E(f∗F)
)

Estimation Error

Size of F

Estimation error

Approximation error

(e.g. Vapnik, Statistical Learning Theory, 1998).

The Computational Problem (i)

• Statistical Perspective:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Perspective:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Incorrect Conclusion:

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.

The Computational Problem (ii)

• Baseline large-scale learning algorithm

Randomly discarding data is the simplest

way to handle large datasets.

– What are the statistical benefits of processing more data?

– What is the computational cost of processing more data?

• We need a theory that joins Statistics and Computation!

– 1967: Vapnik’s theory does not discuss computation.

– 1981: Valiant’s learnability excludes exponential time algorithms,

but (i) polynomial time already too slow, (ii) few actual results.

– We propose a new analysis of approximate optimization. . .

Learning with Approximate Optimization

Computing fn = arg min
f∈F

En(f) is often costly.

Since we already optimize a surrogate function

why should we compute its optimum fn exactly?

Let’s assume our optimizer returns f̃n

such that En(f̃n) < En(fn) + ρ.

For instance, one could stop an iterative

optimization algorithm long before its convergence.

Decomposition of the Error

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error

+ E(fn)− E(f∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Problem:

Choose F, n, and ρ to make this as small as possible,

subject to budget constraints

{

max number of examples n
max computing time T

Small-scale vs. Large-scale Learning

We can give rigorous definitions.

•Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

•Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T .

Small-scale Learning

The active budget constraint is the number of examples.

• To reduce the estimation error, take n as large as the budget allows.

• To reduce the optimization error to zero, take ρ = 0.

•We need to adjust the size of F.

Size of F

Estimation error

Approximation error

See Structural Risk Minimization (Vapnik 74) and later works.

Large-scale Learning

The active budget constraint is the computing time.

•More complicated tradeoffs.

The computing time depends on the three variables: F, n, and ρ.

• Example.

If we choose ρ small, we decrease the optimization error. But we

must also decrease F and/or n with adverse effects on the estimation

and approximation errors.

• The exact tradeoff depends on the optimization algorithm.

•We can compare optimization algorithms rigorously.

Test Error versus Learning Time

Computing Time

T
es

t E
rr

or

Bayes Limit

Test Error versus Learning Time

Computing Time

T
es

t E
rr

or

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

Vary the number of examples. . .

Test Error versus Learning Time

Computing Time

T
es

t E
rr

or

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

optimizer a
optimizer b
optimizer c

model I
model II
model III
model IV

Vary the number of examples, the statistical models, the algorithms,. . .

Test Error versus Learning Time

Computing Time

T
es

t E
rr

or

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

optimizer a
optimizer b
optimizer c

model I
model II
model III
model IV

Good Learning
Algorithms

Not all combinations are equal.

Asymptotics

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error

+ E(fn)− E(f∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Asymoptotic Approach

All three errors must decrease with comparable rates.

Forcing one of the errors to be decrease much faster

- costs in computing time,

- but does not significantly improve the test error.

Asymptotics: Estimation

Uniform convergence bounds

Estimation error ≤ O

([

d

n
log

n

d

]α)

with
1

2
≤ α ≤ 1 .

Value d describes the capacity of our system.

The simplest capacity measure is the Vapnik-Chervonenkis dimension of F.

There are in fact three (four?) types of bounds to consider:

– Classical V-C bounds (pessimistic): O

(

√

d
n

)

– Relative V-C bounds in the realizable case: O

(

d

n
log

n

d

)

– Localized bounds (variance, Tsybakov): O

([

d

n
log

n

d

]α)

Fast estimation rates: (Bousquet, 2002; Tsybakov, 2004; Bartlett et al., 2005; . . .)

Asymptotics: Estimation+Optimization

Uniform convergence arguments give

Estimation error + Optimization error ≤ O

([

d

n
log

n

d

]α

+ ρ

)

= ε .

This is true for all three cases of uniform convergence bounds.

Scaling laws for ρ when F is fixed

The approximation error is constant.

– No need to choose ρ smaller than O
([

d
n log n

d

]α)

.

– Not advisable to choose ρ larger than O
([

d
n log n

d

]α)

.

. . . Approximation+Estimation+Optimization

When F is chosen via a λ-regularized cost

– Uniform convergence theory provides bounds for simple cases

(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; . . .)

– Scaling laws for n, λ and ρ depend on the optimization algorithm.

–new See (Shalev-Shwartz and Srebro, ICML 2008) for Linear SVMs.

When F is realistically complicated

Large datasets matter

– because one can use more features,

– because one can use richer models.

Bounds for such cases are rarely realistic enough.

Analysis of a Simple Case

Simple parametric setup

– F is fixed.

– Functions fw(x) linearly parametrized by w ∈ R
d.

Comparing four iterative optimization algorithms for En(f)

1. Gradient descent.

2. Second order gradient descent (Newton).

3. Stochastic gradient descent.

4. Stochastic second order gradient descent.

Quantities of Interest

• Empirical Hessian at the empirical optimum wn.

H =
∂2En

∂w2
(fwn) =

1

n

n
∑

i=1

∂2ℓ(fn(xi), yi)

∂w2

• Empirical Fisher Information matrix at the empirical optimum wn.

G =
1

n

n
∑

i=1

[

(

∂ℓ(fn(xi), yi)

∂w

) (

∂ℓ(fn(xi), yi)

∂w

)′
]

• Condition number

We assume that there are λmin, λmax and ν such that

– trace
(

GH−1
)

≈ ν.

– spectrum
(

H
)

⊂ [λmin, λmax].

and we define the condition number κ = λmax/λmin.

Gradient Descent (GD)

Iterate

• wt+1← wt − η
∂En(fwt)

∂w

Gradient J

Best speed achieved with fixed learning rate η = 1/λmax.

(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

GD O(nd) O
(

κ log 1
ρ

)

O
(

ndκ log 1
ρ

)

O
(

d2 κ
ε1/α log2 1

ε

)

– In the last column, n and ρ are chosen to reach ε as fast as possible.

– Solve for ε to find the best error rate achievable in a given time.

– Remark: abuses of the O() notation

Second Order Gradient Descent (2GD)

Iterate

• wt+1← wt −H−1 ∂En(fwt)

∂w

Gradient J

We assume H−1 is known in advance.

Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2GD O
(

d
(

d + n
))

O
(

log log 1
ρ

)

O
(

d
(

d + n
)

log log 1
ρ

)

O
(

d2

ε1/α log 1
ε log log 1

ε

)

– Optimization speed is much faster.

– Learning speed only saves the condition number κ.

Stochastic Gradient Descent (SGD)

Iterate (Robbins-Monro)

• Draw random example (xt, yt).

• wt+1← wt −
η

t

∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Best decreasing gain schedule with η = 1/λmin.

(see e.g. Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

SGD O(d) ν k
ρ + o

(

1
ρ

)

O
(

d ν k
ρ

)

O
(

d ν k
ε

)

With 1 ≤ k ≤ κ2

– Optimization speed is catastrophic.

– Learning speed does not depend on the statistical estimation rate α.

– Learning speed depends on condition number κ but scales very well.

Second order Stochastic Descent (2SGD)

Iterate

• Draw random example (xt, yt).

• wt+1← wt −
1

t
H−1 ∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Replace scalar gain
η

t
by matrix

1

t
H−1.

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2SGD O
(

d2
) ν

ρ + o
(

1
ρ

)

O
(

d2 ν
ρ

)

O
(

d2 ν
ε

)

– Second order only changes the constants.

– How to scale better than 1/ǫ anyway?

Benchmarking SGD in Simple Problems

• The theory suggests that SGD is very competitive.

– Many people associate SGD with trouble.

• SGD historically associated with back-propagation.

– Multilayer networks are very hard problems (nonlinear, nonconvex)

– What is difficult, SGD or MLP?

• Try PLAIN SGD on a simple learning problem.

Download from http://leon.bottou.org/projects/sgd.

These simple programs are very short.

Text Categorization with SVMs

• Dataset

– Reuters RCV1 document corpus.

– 781,265 training examples, 23,149 testing examples.

– 47,152 TF-IDF features.

• Task

– Recognizing documents of category CCAT.

– Minimize
1

n

n
∑

i=1

(

λ

2
w2 + ℓ(w xi + b, yi)

)

.

– Update w ← w − ηt∇(wt, xt, yt) = w − ηt

(

λw +
∂ℓ(w xt + b, yt)

∂w

)

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.

Text Categorization with SVMs

• Results: Linear SVM
ℓ(ŷ, y) = max{0, 1− yŷ} λ = 0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

• Results: Log-Loss Classifier
ℓ(ŷ, y) = log(1 + exp(−yŷ)) λ = 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ε = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, ε = 0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

The Wall

50

100

0.2

0.3

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

Testing cost

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost)

SGD

TRON
(LibLinear)

More SVM Experiments

From: Patrick Haffner

Date: Wednesday 2007-09-05 14:28:50

. . . I have tried on some of our main datasets. . .

I can send you the example, it is so striking!

– Patrick

Dataset Train Number of % non-0 LIBSVM LLAMA LLAMA SGDSVM
size features features (SDot) SVM MAXENT

Reuters 781K 47K 0.1% 210,000 3930 153 7
Translation 1000K 274K 0.0033% days 47,700 1,105 7
SuperTag 950K 46K 0.0066% 31,650 905 210 1
Voicetone 579K 88K 0.019% 39,100 197 51 1

More SVM Experiments

From: Olivier Chapelle

Date: Sunday 2007-10-28 22:26:44

. . . you should really run batch with various training set sizes . . .

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 10 100 1000

Time (seconds)

Average Test Loss

1

n=30000
n=100000

n=300000
n=781265

stochastic

n=10000

Log-loss problem

Batch Conjugate
Gradient on various
training set sizes

Stochastic Gradient
on the full set

Why is SGD near the enveloppe?

Text Chunking with CRFs

• Dataset

– CONLL 2000 Chunking Task:

Segment sentences in syntactically correlated chunks

(e.g., noun phrases, verb phrases.)

– 106,978 training segments in 8936 sentences.

– 23,852 testing segments in 2012 sentences.

• Model

– Conditional Random Field (all linear, log-loss.)

– Features are n-grams of words and part-of-speech tags.

– 1,679,700 parameters.

Same setup as (Vishwanathan et al., 2006) but plain SGD.

Text Chunking with CRFs

• Results

Training Time Primal cost Test F1 score

L-BFGS 4335 secs 9042 93.74%
SGD 568 secs 9098 93.75%

new ASGD 135 secs 9325 93.79%

• Notes

– Computing the gradients with the chain rule runs faster than

computing them with the forward-backward algorithm.

Choosing the Gain Schedule

Decreasing gains: wt+1← wt −
η

t + t0
∇(wt, xt, yt)

• Asymptotic Theory

– if s = 2 η λmin < 1 then slow rate O
(

t−s)

– if s = 2 η λmin > 1 then faster rate O
(

s2

s−1 t−1
)

• Example: the SVM benchmark

– Use η = 1/λ because λ ≥ λmin.

– Choose t0 to make sure that the expected initial updates

are comparable with the expected size of the weights.

• Example: the CRF benchmark

– Use η = 1/λ again.

– Choose t0 with the secret ingredient.

A Secret Ingredient for a good SGD

The sample size n does not change the SGD maths!

Constant gain: wt+1← wt − η ∇(wt, xt, yt)

At any moment during training, we can:

– Pick a random subset of examples with moderate size.

– Try various gains η on the subsample.

– Pick the gain η that most reduces the cost.

– Use it for the next 100000 iterations on the full dataset.

• Examples

– The CRF benchmark code does this to choose t0 before training.

– We could also perform such cheap measurements every so often.

The selected gains would then decrease automatically.

Getting the Engineering Right

The very simple SGD update offers lots of engineering opportunities.

Example: Sparse Linear SVM

The update w ← w − η
(

λw +∇ℓ(wxi, yi)
)

can be performed in two steps:

i) w ← w − η∇ℓ(wxi, yi) (sparse, cheap)

ii) w ← w (1− ηλ) (not sparse, costly)

• Solution 1

Represent vector w as the product of a scalar s and a vector v.

Perform (i) by updating v and (ii) by updating s.

• Solution 2

Perform only step (i) for each training example.

Perform step (ii) with lower frequency and higher gain.

SGD in Real Life: A Check Reader.

Examples are pairs (image,amount).

– Field segmentation

– Character segmentation

– Character recognition

– Syntactical interpretation.

• Define differentiable modules.

• Pretrain modules with hand-labelled data.

• Assemble them to form a composite model.

• Define global cost function.

• Train with SGD for a few weeks.

(Bottou, LeCun, Bengio, 1997; LeCun, Bottou, et al., 1998)

Industrially deployed; ran billions of checks since 1996.

SGD in Real Life: Sentence Analysis

Words embedded
in 50−100 dim space

Binary encoded
sentence words.

Trash

Five Time−Delay
Multilayer networks :

Positional
information relative to
the chosen predicate for
semantic tagging

Named Entity Recognition
(treebank, Stanford NER)

Chunking
(treebank)

Semantic Role Labeling
(propbank)

Part Of Speech Tagging
(treebank, split 02−21 / 23) State of the art: 2.75%

ERR: 2.76%

State of the art: 89.31%

State of the art: 94.4%.
F1: 92.7% (94.9% w/pos)

F1: 88.97%

Language Model
(wikipedia, 620M examples)

WER: ~14%
State of the art: ~13%

– (Collobert and Weston, 2007, 2008) [not my work]

– No hand-tuned parsing tricks.

– No hand-tuned linguistic features.

– State-of-the-art accuracies.

– Analyzes a sentence in 50 milliseconds (instead of seconds.)

– Trains with SGD in about 3 weeks.

Conclusions

• Large–scale learning 6= small–scale learning.

• Traditional performance measurements for optimization

algorithms do not apply very well to machine learning problems

• Stochastic optimization makes excellent learning algorithms.

	Title slide
	Summary
	ML Redux: The Experimental Paradigm
	ML Redux: Mathematical Statement (i)
	ML Redux: Mathematical Statement (ii)
	The Statistical Problem
	The Computational Problem (i)
	The Computational Problem (ii)
	Learning with Approximate Optimization
	Decomposition of the Error
	Small-scale vs. Large-scale Learning
	Small-scale Learning
	Large-scale Learning
	Test Error versus Learning Time
	Test Error versus Learning Time
	Test Error versus Learning Time
	Test Error versus Learning Time
	Asymptotics
	Asymptotics: Estimation
	Asymptotics: Estimation+Optimization
	…Approximation+Estimation+Optimization
	Analysis of a Simple Case
	Quantities of Interest
	Gradient Descent (GD)
	Second Order Gradient Descent (2GD)
	Stochastic Gradient Descent (SGD)
	Second order Stochastic Descent (2SGD)
	Benchmarking SGD in Simple Problems
	Text Categorization with SVMs
	Text Categorization with SVMs
	The Wall
	More SVM Experiments
	More SVM Experiments
	Text Chunking with CRFs
	Text Chunking with CRFs
	Choosing the Gain Schedule
	A Secret Ingredient for a good SGD
	Getting the Engineering Right
	SGD in Real Life: A Check Reader.
	SGD in Real Life: Sentence Analysis

