
The New Cluster Paradigm for
Exascale Computing

Thomas Sterling
Professor of Informatics and Computing, Indiana University
Associate Director and Chief Scientist,
Center for Research in Extreme Scale Technologies
Adjunct Professor, Louisiana State University
CSRI Fellow, Sandia National Laboratory

November 30, 2011
SCHOOL OF INFORMATICS AND COMPUTING

INDIANA UNIVERSITY 1

Presentation to the NASA Goddard Space Flight Center

Cluster 2004

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 2

The Cluster Agenda: First Achieve World Domination,
then Kick Ass

Dr. Thomas Sterling

Faculty Associate, California Institute of Technology
Principal Scientist, Jet Propulsion Laboratory

Petaflops Clusters
•  #4 Nebulae

–  1.27 Pflops
–  Dawning
–  China

•  #5 Tsubame 2.0
–  1.19 Pflops
–  NEC/HP
–  Japan

•  #7 Pleiadies
–  1.09 Pflops
–  SGI
–  USA

•  #9 Tera-100
–  1.05 Pflops
–  Bull SA
–  France

3
SCHOOL OF INFORMATICS AND COMPUTING

INDIANA UNIVERSITY

Clusters – part of a Paradigm Shift

4

5

Beowulf Project

  Wiglaf – 1994 (GSFC)
  16 Intel 80486 100 MHz
  VESA Local bus
  256 Mbytes memory
  6.4 Gbytes of disk
  Dual 10 base-T Ethernet
  72 Mflops sustained
  $40K

  Hrothgar – 1995 (GSFC)
  16 Intel Pentium100 MHz
  PCI
  1 Gbyte memory
  6.4 Gbytes of disk
  100 base-T Fast Ethernet

(hub)
  240 Mflops sustained
  $46K

  Hyglac-1996 (Caltech)
  16 Pentium Pro 200 MHz
  PCI
  2 Gbytes memory
  49.6 Gbytes of disk
  100 base-T Fast Ethernet

(switch)
  1.25 Gflops sustained
  $50K

HPC in Phase Change
•  Phase I: Sequential instruction execution (1950)
•  Phase II: Sequential instruction issue (1965)

•  pipeline execution,
•  reservation stations,
•  ILP

•  Phase III: Vector (1975)
•  pipelined arithmetic, registers, memory access
•  Cray

•  Phase IV: SIMD (1985)
•  MasPar, CM-2

•  Phase V: Communicating Sequential Processes (1990)
•  MPP, clusters
•  MPI, PVM

6

The first Supercomputer?

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 7

Computing in Paradigm Shift

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 8

The Essence of Computing – “Cyber”

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 9

Cybernetics in Action

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 10

World’s 1st Cluster

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 11

Technology Demands new Response

12

Strategic Requirements
•  Performance

–  Efficiency
–  Scalability

•  Energy
–  Bounded power
–  Minimized energy

•  Reliability
–  Continued operation in the presence of faults

•  Programmability
–  System transparency
–  Portability across system classes, scales, and generations

•  Generality
–  STEM
–  Knowledge management and understanding

13

Tactical Performance Requirements
•  Starvation

–  Insufficiency of concurrency of work
–  Impacts scalability and latency hiding
–  Effects programmability

•  Latency
–  Time measured distance for remote access and services
–  Impacts efficiency

•  Overhead
–  Critical time additional work to manage tasks & resources
–  Impacts efficiency and granularity for scalability

•  Waiting for contention resolution
–  Delays due to simultaneous access requests to shared physical or

logical resources

14

The Execution Model Imperative

•  HPC in the 6th Phase Change
–  Driven by technology opportunities and challenges
–  Historically, catalyzed by paradigm shift

•  Guiding principles for governing system design and
operation

–  Semantics, Mechanisms, Policies, Parameters, Metrics
•  Enables holistic reasoning about concepts and tradeoffs

–  Serves for Exascale the role of von Neumann architecture for
sequential

•  Essential for co-design of all system layers
–  Architecture, runtime and operating system, programming

models
–  Reduces design complexity from O(N2) to O(N)

•  Empowers discrimination, commonality, portability
–  Establishes a phylum of UHPC class systems

•  Decision chain
–  For reasoning towards optimization of design and operation

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 16

StarSs for SMP and multicores

•  HPL Linpack: Comparison of SMPSs, OpenMP and MPI on a dual socket
Istambul

Courtesy of Jesus Labarta, BSC

StarSs: … taskified …
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],
 float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],
 float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B
 vadd3 (&A[i], &B[i], &C[i]);
...
for (i=0; i<N; i+=BS) // sum(C
[i])
 accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A
 scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D
 vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F
 vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 8 7

17

9

18

10

19

11

20

12

Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Compute dependences @ task instantiation time

Courtesy of Jesus Labarta, BSC

Game Changer – Runtime System
•  Runtime system

–  is: ephemeral, dedicated to and exists only with an application
–  is not: the OS, persistent and dedicated to the hardware system

•  Moves us from static to dynamic operational regime
–  Exploits situational awareness for causality-driven adaptation
–  Guided-missile with continuous course correction rather than a fired projectile

with fixed-trajectory
•  Based on foundational assumption

–  Untapped system resources to be harvested
–  More computational work will yield reduced time and lower power
–  Opportunities for enhanced efficiencies discovered only in flight
–  New methods of control to deliver superior scalability

•  “Undiscovered Country” – adding a dimension of systematics
–  Adding a new component to the system stack
–  Path-finding through the new trade-off space

19

Concepts towards a new Paradigm
•  Motivated by dynamic directed graphs

–  STEM
–  Knowledge management and understanding

•  Split-phase transactions
–  Avoid blocking

•  Message-driven computation
–  Move work to data
–  Parcels and Percolation

•  Constraint-based synchronization
–  Declarative criteria for work
–  Event driven

•  Data-directed execution
–  Merger of flow control and data structure

•  Shared name space

20

ParalleX Execution Model Components

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 21

A Quick ParalleX Review
1.  Synchronous Domains
2.  AGAS – Active Global Address Space
3.  ParalleX Processes – with capabilities protection
4.  Computational Complexes – threads & fine grain dataflow
5.  Local Control Objects – synchronization and global distributed

control state
6.  Distributed control operation – global mutable data structures
7.  Parcels – message-driven execution and continuation

migration
8.  Percolation – heterogeneous control
9.  Micro-checkpointing – compute-validate-commit
10. Self-aware – introspection and declarative management

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 22

Constraint-based Synchronization

•  Supports Dynamic-Adaptive Task Scheduling
•  Declarative Semantics for Continuation of Execution

–  Defines conditions for work to be performed
–  Not imperative code by user

•  Establishes Criteria for Task Instantiation
•  Supports DAG flow control representation
•  Examples:

–  Dataflow
–  Futures

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 23

Dataflow LCO

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 24

Control
State

values

Operand
Value Buffer

Predicate
(all values?)

New Thread
Create

Incident
input

operand
values

Thread
Method

Event
Assimilation

Method

Control
Method

New
Thread

Inherited Generic Methods

Motivation for Message-Driven Computation
•  To achieve high scalability, efficiency, programmability
•  To enable new models of computation

–  e.g., ParalleX
•  To facilitate conventional models of computation

–  e.g., MPI
•  Hide latency

–  Support overlap of communication with computation
–  Move work to data, not always data to work

•  Work-queue model of computing
–  Segregate physical resource from abstract task
–  Circumvent blocking of resource utilization

•  Support asynchrony of operation
•  Maintain symmetry of semantics between synchronous and

asynchronous operation

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 25

26

Parcel Structure

LOUISIANA STATE UNIVERSITY

destination payload action continuations CRC

Transport / network layer
protocol wrappers

header trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize
the message footprint (e.g. destination address, checksum)

27

Latency Hiding with Parcels
with respect to System Diameter in cycles

Parcel
Class
Buffer

Thread	
 Create	

Thread	

Manager	

Interface	

Packet	

Buffer	

Primi7ves	

from
NIC

Data	
 	

Movement	

Control	

Atomic	
 	

DMA	
 	
 Ops	

Parcel Handler Implementation

28

Data block store

Data block request

Atomic data operations &
L/S
Basic LCO

Thread & OS instantiation

Thread load

Thread management

Hardware

Memory	

HPX Runtime Design
•  Current version of HPX provides the following infrastructure

as defined by the ParalleX execution model
–  Complexes (ParalleX Threads) and ParalleX Thread Management
–  Parcel Transport and Parcel Management
–  Local Control Objects (LCOs)
–  Active Global Address Space (AGAS)

29

LIGO: Laser Interferometer Gravitational
Observatory

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 30

Adaptive Mesh Refinement
•  Why Adaptive Mesh Refinement?
•  The AMR dataflow in ParalleX
•  The impact of granularity
•  3-D Test problem: comparisons between MPI

based publicly available AMR toolkits and
ParalleX AMR

•  Impact of nedmalloc, concur, tcmalloc, and
jmalloc

Constraint based Synchronization for
AMR

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 32

33

34

Application: Adaptive Mesh Refinement
(AMR) for Astrophysics simulations

•  ParalleX based AMR removes all global computation barriers, including the timestep
barrier (so not all points have to reach the same timestep in order to proceed computing)

XPI: a ParalleX API
•  Low-level programming syntax

–  MPI touch&feel
–  C bindings

•  Source to source translation layer
–  Targets HPX library calls
–  Not implemented

•  XPI_thread
•  XPI_process
•  XPI_parcel
•  XPI_LCO

Conclusions
•  Cluster Computing is going through a phase transition; a

paradigm shift to exploit many core
•  Needs a new execution model

–  Attack starvation, latency, overhead, & waiting for contention (SLOW)
–  Dynamic adaptive resource management & task scheduling
–  Dynamic graph-based applications for knowledge management (AI)

•  ParalleX provides basis for new system methods & components
–  Programming models
–  Runtime systems
–  Architecture changes

•  Commodity clusters continue to leverage their major strength
–  Economy of scale through mass market of component elements
–  System software and tools from high end and low end computing
–  Leader of commercial, scientific, and defense computing needs

37

