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Petaflops Clusters 
•  #4 Nebulae   

–  1.27 Pflops 
–  Dawning 
–  China 

•  #5 Tsubame 2.0    
–  1.19 Pflops 
–  NEC/HP 
–  Japan 

•  #7 Pleiadies    
–  1.09 Pflops 
–  SGI 
–  USA 

•  #9 Tera-100 
–  1.05 Pflops 
–  Bull SA 
–  France 
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Clusters – part of a Paradigm Shift 
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Beowulf Project 

  Wiglaf – 1994 (GSFC) 
  16 Intel 80486 100 MHz 
  VESA Local bus 
  256 Mbytes memory 
  6.4 Gbytes of disk 
  Dual 10 base-T Ethernet 
  72 Mflops sustained 
  $40K 

  Hrothgar – 1995 (GSFC) 
  16 Intel Pentium100 MHz 
  PCI 
  1 Gbyte memory 
  6.4 Gbytes of disk 
  100 base-T Fast Ethernet 

(hub) 
  240 Mflops sustained 
  $46K 

  Hyglac-1996 (Caltech) 
  16 Pentium Pro 200 MHz 
  PCI 
  2 Gbytes memory 
  49.6 Gbytes of disk 
  100 base-T Fast Ethernet 

(switch) 
  1.25 Gflops sustained 
  $50K 



HPC in Phase Change 
•  Phase I: Sequential instruction execution (1950)  
•  Phase II: Sequential instruction issue (1965) 

•  pipeline execution,  
•  reservation stations, 
•  ILP 

•  Phase III: Vector (1975) 
•  pipelined arithmetic, registers, memory access 
•  Cray 

•  Phase IV: SIMD (1985) 
•  MasPar, CM-2 

•  Phase V: Communicating Sequential Processes (1990) 
•  MPP, clusters 
•  MPI, PVM 
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The first Supercomputer? 
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Computing in Paradigm Shift 
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The Essence of Computing – “Cyber” 

DEPARTMENT OF COMPUTER SCIENCE  @  
LOUISIANA STATE UNIVERSITY 9 



Cybernetics in Action 
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World’s 1st Cluster  
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Technology Demands new Response 
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Strategic Requirements 
•  Performance 

–  Efficiency 
–  Scalability  

•  Energy 
–  Bounded power 
–  Minimized energy 

•  Reliability 
–  Continued operation in the presence of faults 

•  Programmability 
–  System transparency 
–  Portability across system classes, scales, and generations 

•  Generality 
–  STEM 
–  Knowledge management and understanding 
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Tactical Performance Requirements 
•  Starvation 

–  Insufficiency of concurrency of work 
–  Impacts scalability and latency hiding 
–  Effects programmability 

•  Latency 
–  Time measured distance for remote access and services 
–  Impacts efficiency 

•  Overhead 
–  Critical time additional work to manage tasks & resources 
–  Impacts efficiency and granularity for scalability 

•  Waiting for contention resolution 
–  Delays due to simultaneous access requests to shared physical or 

logical resources 
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The Execution Model Imperative 

•  HPC in the 6th Phase Change 
–  Driven by technology opportunities and challenges 
–  Historically, catalyzed by paradigm shift 

•  Guiding principles for governing system design and 
operation 

–  Semantics, Mechanisms, Policies, Parameters, Metrics 
•  Enables holistic reasoning about concepts and tradeoffs 

–  Serves for Exascale the role of von Neumann architecture for 
sequential 

•  Essential for co-design of all system layers 
–  Architecture, runtime and operating system, programming 

models 
–  Reduces design complexity from O(N2) to O(N) 

•  Empowers discrimination, commonality, portability 
–  Establishes a phylum of UHPC class systems 

•  Decision chain 
–  For reasoning towards optimization of design and operation 
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StarSs for SMP and multicores 

•  HPL Linpack: Comparison of SMPSs, OpenMP and MPI on a dual socket 
Istambul 

Courtesy of Jesus Labarta, BSC 



StarSs: … taskified … 
#pragma css task input(A, B) output(C) 
void vadd3 (float A[BS], float B[BS], 
            float C[BS]); 
#pragma css task input(sum, A) inout(B) 
void scale_add (float sum, float A[BS], 
               float B[BS]); 
#pragma css task input(A) inout(sum) 
void accum (float A[BS], float *sum); 

for (i=0; i<N; i+=BS)             // C=A+B 
   vadd3 ( &A[i], &B[i], &C[i]); 
... 
for (i=0; i<N; i+=BS)            // sum(C
[i]) 
   accum (&C[i], &sum); 
... 
for (i=0; i<N; i+=BS)            // B=sum*A 
   scale_add (sum, &E[i], &B[i]); 
... 
for (i=0; i<N; i+=BS)            // A=C+D 
   vadd3 (&C[i], &D[i], &A[i]); 
... 
for (i=0; i<N; i+=BS)            // E=G+F 
   vadd3 (&G[i], &F[i], &E[i]); 
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Color/number: order of task instantiation 
Some antidependences covered by flow dependences not drawn 

Compute dependences @ task instantiation time 

Courtesy of Jesus Labarta, BSC 



Game Changer – Runtime System 
•  Runtime system 

–  is: ephemeral, dedicated to and exists only with an application 
–  is not: the OS, persistent and dedicated to the hardware system 

•  Moves us from static to dynamic operational regime 
–  Exploits situational awareness for causality-driven adaptation 
–  Guided-missile with continuous course correction rather than a fired projectile 

with fixed-trajectory 
•  Based on foundational assumption 

–  Untapped system resources to be harvested 
–  More computational work will yield reduced time and lower power 
–  Opportunities for enhanced efficiencies discovered only in flight 
–  New methods of control to deliver superior scalability 

•  “Undiscovered Country” – adding a dimension of systematics 
–  Adding a new component to the system stack 
–  Path-finding through the new trade-off space 
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Concepts towards a new Paradigm 
•  Motivated by dynamic directed graphs 

–  STEM 
–  Knowledge management and understanding 

•  Split-phase transactions 
–  Avoid blocking 

•  Message-driven computation 
–  Move work to data 
–  Parcels and Percolation 

•  Constraint-based synchronization 
–  Declarative criteria for work 
–  Event driven 

•  Data-directed execution 
–  Merger of flow control and data structure 

•  Shared name space 
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ParalleX Execution Model Components 
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A Quick ParalleX Review 
1.  Synchronous Domains 
2.  AGAS – Active Global Address Space 
3.  ParalleX Processes – with capabilities protection 
4.  Computational Complexes – threads & fine grain dataflow 
5.  Local Control Objects – synchronization and global distributed 

control state 
6.  Distributed control operation – global mutable data structures 
7.  Parcels – message-driven execution and continuation 

migration 
8.  Percolation – heterogeneous control 
9.  Micro-checkpointing – compute-validate-commit 
10. Self-aware – introspection and declarative management 
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Constraint-based Synchronization 

•  Supports Dynamic-Adaptive Task Scheduling 
•  Declarative Semantics for Continuation of Execution 

–  Defines conditions for work to be performed 
–  Not imperative code by user 

•  Establishes Criteria for Task Instantiation 
•  Supports DAG flow control representation 
•  Examples: 

–  Dataflow 
–  Futures 
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Dataflow LCO 
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Motivation for Message-Driven Computation 
•  To achieve high scalability, efficiency, programmability 
•  To enable new models of computation 

–  e.g., ParalleX 
•  To facilitate conventional models of computation 

–  e.g., MPI 
•  Hide latency 

–  Support overlap of communication with computation 
–  Move work to data, not always data to work 

•  Work-queue model of computing 
–  Segregate physical resource from abstract task 
–  Circumvent blocking of resource utilization 

•  Support asynchrony of operation 
•  Maintain symmetry of semantics between synchronous and 

asynchronous operation 
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Parcel Structure 

LOUISIANA STATE UNIVERSITY 

destination payload action continuations CRC 

Transport / network layer 
protocol wrappers 

header trailer 

PX Parcel 

Parcels may utilize underlying communication protocol fields to minimize 
the message footprint (e.g. destination address, checksum) 
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Latency Hiding with Parcels 
with respect to System Diameter in cycles 
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HPX Runtime Design 
•  Current version of HPX provides the following infrastructure 

as defined by the ParalleX execution model 
–  Complexes (ParalleX Threads) and ParalleX Thread Management 
–  Parcel Transport and Parcel Management 
–  Local Control Objects (LCOs) 
–  Active Global Address Space (AGAS) 
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LIGO: Laser Interferometer Gravitational 
Observatory 
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Adaptive Mesh Refinement 
•  Why Adaptive Mesh Refinement? 
•  The AMR dataflow in ParalleX 
•  The impact of granularity 
•  3-D Test problem: comparisons between MPI 

based publicly available AMR toolkits and 
ParalleX AMR 

•  Impact of nedmalloc, concur, tcmalloc, and 
jmalloc 



Constraint based Synchronization for 
AMR 
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Application: Adaptive Mesh Refinement 
(AMR) for Astrophysics simulations 

•  ParalleX based AMR removes all global computation barriers, including the timestep 
barrier (so not all points have to reach the same timestep in order to proceed computing) 



XPI: a ParalleX API 
•  Low-level programming syntax 

–  MPI touch&feel 
–  C bindings 

•  Source to source translation layer 
–  Targets HPX library calls 
–  Not implemented 

•  XPI_thread 
•  XPI_process 
•  XPI_parcel 
•  XPI_LCO 



Conclusions 
•  Cluster Computing is going through a phase transition; a 

paradigm shift to exploit many core 
•  Needs a new execution model 

–  Attack starvation, latency, overhead, & waiting for contention (SLOW) 
–  Dynamic adaptive resource management & task scheduling 
–  Dynamic graph-based applications for knowledge management (AI) 

•  ParalleX provides basis for new system methods & components 
–  Programming models 
–  Runtime systems 
–  Architecture changes 

•  Commodity clusters continue to leverage their major strength 
–  Economy of scale through mass market of component elements 
–  System software and tools from high end and low end computing 
–  Leader of commercial, scientific, and defense computing needs 
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