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Motivation for Group-based Cryptography

I New one-way functions

I Shor quantum algorithm

I Provable security and quantum resistant

I Efficiency



FHE

Definition
A Fully Homomorphic Encryption (FHE) scheme is an encryption
scheme which is additively and multiplicatively homomorphic. For
encryption function E , and plaintexts a, b, the following holds:

E (a + b) = E (a) + E (b)

E (ab) = E (a)E (b)

It is implied that for any polynomial function F , evaluating the
function on ciphertexts and decrypting the result is equivalent to
evaluating the function on plaintexts, xi .

E (F (x1, x2, . . . , xn)) = F (E (x1),E (x2), . . . ,E (xn))



Black Box

FHE Scheme:

D. Kahrobaei, V. Shpilrain, Method and apparatus for fully homomorphic
encryption, private search, and private information retrieval, US20170063526.

I Plaintext Space: Zp, embedded into a ring R which is a direct
sum of several copies of Zp

I Ciphertext Space: S, another direct sum of several copies of
Zp, with ideal I such that S/I = R

I Encryption: for u ∈ R, and E (0) ∈R I

E (u) = u + E (0)

I Decryption: a map ρ : S → R where ρ(I) = 0.



Black Box

FHE Scheme:

D. Kahrobaei, V. Shpilrain, Method and apparatus for fully homomorphic
encryption, private search, and private information retrieval, US20170063526.

Zp
α−→ R

E−→ S ρ−→ R
β−→ Zp

Correctness of Evaluation: For j1, j2, j3 ∈ I and u, v ∈ R, the
scheme presented above is both additively and multiplicatively
homomorphic:

E (u) + E (v) = u + j1 + v + j2 = u + v + j3 = E (u + v)

E (u)E (v) = (u+j1)(v+j2) = uv+uj2+j1v+j1j2 = uv+j3 = E (uv)



Black Box

FHE Scheme:

D. Kahrobaei, V. Shpilrain, Method and apparatus for fully homomorphic
encryption, private search, and private information retrieval, US20170063526.

Zp
α−→ R

E−→ S ρ−→ R
β−→ Zp

Security:

I Secure against ciphertext-only attack (COA)

I An attacker who retrieves part of an encrypted database has
only a negligible probability of correctly decrypting any
portion of the database.



Goals

Goal: Secure, accurate and efficient machine learning and function
evaluation over encrypted data.



Private search and Third Party Search

P(x) = ΠE(y)∈E(D)(E (x)− E (y)) = Πy∈DE (x − y)



Fully Homomorphic Machine Learning: Encrypted medical
and genomic data

Collaboration with University of Michigan, Computational
Medicine and Bioinformatics Department

A. Gribov, K. Horan, D. Kahrobaei, V. Shpilrain, R. Souroush, K.
Najarian, Medical diagnostic based on encrypted medical data,
Journal of Biomedical Informatics, Elsevier, accepted pending on
minor revision, 1–10 (2017).



Post-Quantum Cryptography

The quantum-safe primitives under consideration all come from the
following five families:

I Lattice-based primitives where the security depends on the
difficulty of solving a short or close vector problem in a lattice.

I Multivariate primitives where the security depends on the
difficulty of solving a system of multivariate polynomial
equations.

I Code-based primitives where the security depends on the
difficulty of solving a decoding problem in a linear code.

I Hash-based primitives where the security depends on the
difficulty of finding collisions or preimages in cryptographic
hash functions.

I Isogeny-based key primitives where the security depends on
the difficulty of finding an unknown isogeny between a pair of
supersingular elliptic curves.



Post-Quantum Cryptography

Definition (Superposition Attack)

A superposition attack can be applied to both classical and
quantum cryptographic protocols, where we consider security if the
adversary had quantum access to the primitive, i.e. quantum
communication with the oracle. Therefore, the adversary can query
the oracle in a superposition of states.



Presentation

Presentations are ways of defining groups as quotient of free
groups.

Definition (Relation)

Let X be an alphabet. A relation over X is any pair (w ,w ′) of
reduced words over X . We usually write w = w ′ instead of (w ,w ′).
Note that ww ′−1 = 1 (where 1 denoted the identity). Let R be
the set of all relations. We define a presentation as a pair 〈X ;R〉.

Definition (Group Presentation)

Let F (X ) be the free group on the set X . Define N to be the
smallest normal subgroup of F (X ) containing the set
{ww ′−1|(w = w ′) ∈ R}. Then the group defined by a presentation
〈X ;R〉 is the quotient F (X )/N.



Decision and Search Problems

I The one-way functions that are used in group based
cryptosystems are based for the most part on algorithmic
group decision and search problems.

I We define some of the decision and search problems in
combinatorial group theory, that have been used for
non-commutative cryptography.

I In general all are algorithmically unsolvable.

I It is important to see how difficult they are when solvable,
they are for a given platform group.



Decision, Witness and Search Problems

Definition (Decision problems)

are problems of the following nature: given a property P and an
object O, find out whether or not the object O has the property P.

Definition (Witness problems)

are: given a property P and an object O with the property P, find
a proof of the fact that O indeed has the property P.

Definition (Search problems)

are of the following nature: given a property P and an object O
with the property P, find something material establishing the
property P.



Word Problems

Definition (Word Decision Problem)

Given a finitely presented group G does there exist an algorithm to
decide whether or not a word in the generators is the trivial word?

Definition (Word Search Problem)

Given a finitely presented group G and a w which presents the
identity, does there exist an algorithm to find an expression of w as
a product of words of the form fi

−1ri fi where ri is a relator of the
group G and fi is a word in the ambient free group.



Conjugacy Problems

Definition (Decision Conjugacy Problem)

Given a group G with a finite presentation, does there exist an
algorithm to decide whether or not an arbitrary pair of words u and
v in the generators of G are conjugate? That is, is there an x ∈ G
such that x−1ux = v?

Definition (Conjugator Search Problem)

Let G be a finitely presented group. Given two conjugate words u
and v , is there an algorithm to find a z such that z−1uz = v?



The problems are not independent, for example in a finitely
presented group G the word problem of G is Turing reducible to
the conjugacy problem of G . That is, WP(G ) ≤T CP(G ).



Groups with Solvable Word Problem

Example

If G is a finite group given by a multiplication table presentation, it
is easy to describe algorithms for solving Decision and Search Word
Problems and Conjugacy problems.

Example

If G is a finitely generated abelian group, then the word and
conjugacy problems for G are solvable.



Example

If F = 〈x1, · · · , xn; 〉 is a finitely generated free group: WP(F) is
solved by freely reducing. CP(F) is also solvable.

Example

The word problem for nilpotent group is solvable.

Example

Let G be a polycyclic group. Using the fact that every word in G
has a normal form, we can conclude that G has solvable word
problem.

Theorem
There exists a solvable group of class 3 with unsolvable word
problem.



Theorem
(Novikov-Boone) There exists a finitely presented group whose
word problem is recursively unsolvable.

Theorem
Conjugacy search problem is always solvable.



Growth Rate of a Group

Let G be a finitely generated group. The growth function

γ : N −→ R

is defined by
γ(n) = #{w ∈ G : l(w) ≤ n}

where l(w) is the length of w as a word in the generators of G .
If we use normal forms to represent group elements, then each
element has a unique representation, and there is an obvious
relation between the growth function of a group and the key space
that the group provides.



The Diffie-Hellman public key exchange (1976)

1. Alice and Bob agree on a public (finite) cyclic group G and a
generating element g in G . We will write the group G
multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (ga)b = gab.

Since ab = ba (because Z is commutative), both Alice and Bob
are now in possession of the same group element K = KA = KB

which can serve as the shared secret key.



A Non-Abelian Diffie-Hellman Key Exchange

Non-Abelian Diffie-Hellman Key Exchange- Ko,Lee et al.

Let G be a finitely presented group such that finding the normal
form of every element is efficient and solving the Conjugacy search
Problem for G is hard, A,B ≤ G with [A,B] = 1.
The groups G ,A,B and g ∈ G are public.
Denote h−1gh = gh for g , h ∈ G .

I Alice chooses random a ∈ A and sends ga to Bob.

I Bob chooses random b ∈ B and sends gb to Alice.

I The shared key is gab which is computable for both Bob and
Alice since [A,B] = 1.

In order for an adversary to obtain the shared key based on the given
information, he or she must solve the search conjugacy problem.



Platform Group Requirements

Properties of platform group for Non-abelian Diffie-Hellman

I Finitely Presented

I Efficiently computable normal form

I Conjugacy search problem has exponential time complexity

I Exponential growth rate (for a large key space)

I Resistant against Length Based Attack (A Heuristic Algorithm
to Solve the CSP) or other existing attacks.



Polycyclic Groups (Proposed by Eick, K. 2004)

I Polycyclic Groups are finitely presented.

I Efficiently computable normal form

I The non-virtually nilpotent polycyclic groups have exponential
growth rate (Milnor and Wolf 1968)

I (Garber, K, Lam [J. Math. Crypt. 2015]) Certain classes of
polycyclic groups are secure against length based attacks.

I (Gryak, K., Martinez-Perez 2016) There are classes of finitely
presented metabelian groups in which the conjugacy search
problem is at most exponential time. In the case of
generalized metabelian Baumslag-Solitar Groups reduces to
Discrete Log Problem.



Generalized Metabelian BS Groups and DLP

For generalized metabelian Baumslag-Solitar groups of the form:

G = 〈q1, q2, b|bq1 = bm1 , bq2 = bm2 , [q1, q2] = 1〉 ,

the conjugacy search problem reduces to the discrete logarithm
problem.



Proposed Platforms

I Braid groups (Ko-Lee) 2000: Complexity of Conjugacy Search
Problem

I Polycyclic Groups (Eick, K.-2004): Complexity of Conjugacy
Search Problem

I Linear Groups (Baumslag, Fine, Xu, 2004) : Complexity of
finding generators of subgroups

I Right Angled Artin Groups (Flores, K. 2016) : Authentication
Scheme: Subgroup Isomorphism problem (unsolvability results
by Bridson), Group Homomorphism Problem (NP-Complete),
Secret sharing: Linear time complexity Word Problem

I Hyperbolic Groups (Chatterji, K., Lu 2016): Subgroup
distortion.

I Free nilpotent p-groups (K., Shpilrain 2016): Semidirect
product public key



Proposed Platforms

I Semigroup of Matrices over Group Rings (K., Koupparis,
Shpilrain, 2013) Discrete Log Type

I Small Cancellation Groups (Habeeb, K., Shpilrain 2012)

I Free Metabelian Groups (Shpilrain, Zapata, 2006) Subgroup
Membership Search Problem, (Habeeb, K., Shpilrain 2012) :
Complexity of Endomorphism Search problem.

I Thompson Groups (Shpilrain, Ushakov, 2005): Complexity of
Decomposition Search Problem

I Grigorchuk Groups (Petrides 2003)

I Groups of Matrices (Grigoriev, Ponameranco, 2004)
Homomorphic Encryption



The Diffie-Hellman public key exchange (1976)

1. Alice and Bob agree on a public (finite) cyclic group G and a
generating element g in G . We will write the group G
multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (ga)b = gab.

Since ab = ba (because Z is commutative), both Alice and Bob
are now in possession of the same group element K = KA = KB

which can serve as the shared secret key.



Security assumptions

To recover gab from (g , ga, gb) is hard.

To recover a from (g , ga) (discrete log problem) is hard.



Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a
generating element g in G . We will write the group G
multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb) · (ga) = gb+a.

5. Bob computes KB = (ga) · (gb) = ga+b.

Obviously, KA = KB = K , which can serve as the shared secret key.
Drawback: anybody can obtain K the same way!



Semidirect product

Let G ,H be two groups, let Aut(G ) be the group of
automorphisms of G , and let ρ : H → Aut(G ) be a
homomorphism. Then the semidirect product of G and H is the set

Γ = G oρ H = {(g , h) : g ∈ G , h ∈ H}

with the group operation given by

(g , h)(g ′, h′) = (gρ(h
′) · g ′, h · h′).

Here gρ(h
′) denotes the image of g under the automorphism ρ(h′).



Extensions by automorphisms

If H = Aut(G ), then the corresponding semidirect product is called
the holomorph of the group G . Thus, the holomorph of G , usually
denoted by Hol(G ), is the set of all pairs (g , φ), where
g ∈ G , φ ∈ Aut(G ), with the group operation given by

(g , φ) · (g ′, φ′) = (φ′(g) · g ′, φ · φ′).

It is often more practical to use a subgroup of Aut(G ) in this
construction.

Also, if we want the result to be just a semigroup, not necessarily a
group, we can consider the semigroup End(G ) instead of the group
Aut(G ) in this construction.



Public Key-Exchange Using Semidirect Product of Groups

Private key: m ∈ N
(g , φ)m =

(φm−1(g) · · ·φ2(g) · φ(g) · g︸ ︷︷ ︸
a

, φm)

Public: G , g ∈ G , φ.
a, b

(b, x) · (a, φm) =

(a, y) · (b, φn) =

(g , φ)m+n Private key: n ∈ N
b

M. Habeeb, D. Kahrobaei, C. Koupparis, and V. Shpilrain, Public key exchange using semidirect product of
(semi)groups, in: ACNS 2013, Applied Cryptography and Network Security, LNCS 7954 (2013), 475–486.

D. Kahrobaei, V. Shpilrain, Invited Paper: Using semidirect product of (semi)groups in public key cryptography,
Computability in Europe 2016, LNCS 9709,132–141 (2016).



Key exchange using extensions by automorphisms
(Habeeb-K.-Koupparis-Shpilrain)

I Let G be a group (or a semigroup).

I An element g ∈ G is chosen and made public as well as an
arbitrary automorphism (or an endomorphism) φ of G .

I Bob chooses a private n ∈ N.

I While Alice chooses a private m ∈ N.

I Both Alice and Bob are going to work with elements of the
form (g , φk), where g ∈ G , k ∈ N.



Using semidirect product (cont.)

1. Alice computes

(g , φ)m = (φm−1(g) · · ·φ2(g) · φ(g) · g , φm)

and sends only the first component of this pair to Bob.
Thus, she sends to Bob only the element

a = φm−1(g) · · ·φ2(g) · φ(g) · g

of the group G .

2. Bob computes

(g , φ)n = (φn−1(g) · · ·φ2(g) · φ(g) · g , φn)

and sends only the first component of this pair to Alice:

b = φn−1(g) · · ·φ2(g) · φ(g) · g .



Using semidirect product (cont.)

3. Alice computes

(b, x) · (a, φm) = (φm(b) · a, x · φm).

Her key is now
KA = φm(b) · a.

Note that she does not actually “compute” x · φm because she
does not know the automorphism x ; recall that it was not
transmitted to her. But she does not need it to compute KA.



Using semidirect product (cont.)

4. Bob computes

(a, y) · (b, φn) = (φn(a) · b, y · φn).

His key is now
KB = φn(a) · b.

Again, Bob does not actually “compute” y · φn because he
does not know the automorphism y .

5. Since

(b, x) · (a, φm) = (a, y) · (b, φn) = (g , φ)m+n,

we should have KA = KB = K , the shared secret key.



Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k, 1 < k < p − 1, where k is
relatively prime to p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .



Special case: Diffie-Hellman

“The Diffie-Hellman type problem” would be to recover the shared
key

K = g
km+n−1

k−1

from the triple

(g , g
km−1
k−1 , g

kn−1
k−1 ).

Since g and k are public, this is equivalent to recovering gkm+n

from the triple (g , gkm
, gkn

), i.e., this is exactly the standard
Diffie-Hellman problem.



Group ring

Definition (Group ring)

Let G be a group written multiplicatively and let R be any
commutative ring with nonzero unity. The group ring R[G ] is
defined to be the set of all formal sums∑

gi∈G
rigi

where ri ∈ R, and all but a finite number of ri are zero.



We define the sum of two elements in RG by∑
gi∈G

aigi

 +

∑
gi∈G

bigi

 =
∑
gi∈G

(ai + bi )gi .

Note that (ai + bi ) = 0 for all but a finite number of i , hence the
above sum is in R[G ]. Thus (R[G ],+) is an abelian group.
Multiplication of two elements of R[G ] is defined by the use of the
multiplications in G and R as follows:∑

gi∈G
aigi

∑
gi∈G

bigi

 =
∑
gi∈G

 ∑
gjgk=gi

ajbk

 gi .



Platform: matrices over group rings

We use the semigroup of 3× 3 matrices over the group ring
Z7[A5], where A5 is the alternating group on 5 elements.
Then the public key consists of two matrices: the (invertible)
conjugating matrix H and a (non-invertible) matrix M. The shared
secret key then is:

K = H−(m+n)(HM)m+n.



Here we use an extension of the semigroup G by an inner
automorphism ϕ

H
, which is conjugation by a matrix

H ∈ GL3(Z7[A5]). Thus, for any matrix M ∈ G and for any integer
k ≥ 1, we have

ϕ
H

(M) = H−1MH; ϕk
H

(M) = H−kMHk .



1. Alice and Bob agree on public matrices M ∈ G and
H ∈ GL3(Z7[A5]). Alice selects a private positive integer m,
and Bob selects a private positive integer n.

2. Alice computes
(M, ϕ

H
)m = (H−m+1MHm−1 · · ·H−2MH2 · H−1MH ·M, ϕm

H
)

and sends only the first component of this pair to Bob.
Thus, she sends to Bob only the matrix

A = H−m+1MHm−1 · · ·H−2MH2 ·H−1MH ·M = H−m(HM)m.



3. Bob computes
(M, ϕ

H
)n = (H−n+1MHn−1 · · ·H−2MH2 · H−1MH ·M, ϕn

H
)

and sends only the first component of this pair to Alice.
Thus, he sends to Alice only the matrix

B = H−n+1MHn−1 · · ·H−2MH2 · H−1MH ·M = H−n(HM)n.



4. Alice computes (B, x) · (A, ϕm
H

) = (ϕm
H

(B) · A, x · ϕm
H

). Her

key is now KAlice = ϕm
H

(B) · A = H−(m+n)(HM)m+n. Note
that she does not actually “compute” x · ϕm

H
because she does

not know the automorphism x = ϕn
H

; recall that it was not
transmitted to her. But she does not need it to compute
KAlice .



5. Bob computes (A, y) · (B, ϕn
H

) = (ϕn
H

(A) · B, y · ϕn
H

). His key
is now KBob = ϕn

H
(A) · B. Again, Bob does not actually

“compute” y · ϕn
H

because he does not know the
automorphism y = ϕm

H
.

6. Since (B, x) · (A, ϕm
H

) = (A, y) · (B, ϕn
H

) = (M, ϕ
H

)m+n, we
should have KAlice = KBob = K , the shared secret key.



Security assumptions

To recover H−(m+n)(HM)m+n from
(M, H, H−m(HM)m, H−n(HM)n) is hard.

To recover m from H−m(HM)m is hard.



Nilpotent groups and p-groups

Definition
First we recall that a free group Fr on x1, . . . , xr is the set of
reduced words in the alphabet {x1, . . . , xr , x−11 , . . . , x−1r }.

I It is a fact that every group that can be generated by r
elements is the factor group of Fr by an appropriate normal
subgroup. We are now going to define two special normal
subgroups of Fr .

I The normal subgroup F p
r is generated (as a group) by all

elements of the form gp, g ∈ Fr . In the factor group Fr/F
p
r

every nontrivial element therefore has order p (if p is a prime).



Nilpotent groups and p-groups (cont.)

I The other normal subgroup that we need is somewhat less
straightforward to define. Let [a, b] denote a−1b−1ab. Then,
inductively, let [y1, . . . , yc+1] denote [[y1, . . . , yc ], yc+1]. For a
group G , denote by γc(G ) the (normal) subgroup of G
generated (as a group) by all elements of the form
[y1, . . . , yc ]. If γc+1(G ) = {1}, we say that the group G is
nilpotent of nilpotency class c .

I The factor group Fr/γc+1(Fr ) is called the free nilpotent
group of nilpotency class c . This group is infinite.



Free nilpotent p-group

I The group G = Fr/F
p2
r · γc+1(Fr ) is what we suggest to use

as the platform for the key exchange protocol.

I This group, being a nilpotent p-group, is finite. Its order
depends on p, c , and r . For efficiency reasons, it seems better
to keep c and r fairly small (in particular, we suggest c = 2 or
3), while p should be large enough to make the dimension of
linear representations of G so large that a linear algebra
attack would be infeasible.

I The minimal faithful representation of a finite p-group as a
group of matrices over a finite field of characteristic p is in
this case of dimension 1 + p. Thus, if p is, say, a 100-bit
number, a linear algebra attack is already infeasible.



Thanks

Thank You!


