Modeling and Visualizing the World Through Internet Photo Collections

Noah Snavely
Cornell University

Goddard Space Flight Center, IS&T Colloquium April 29, 2009
The world in photos

• There are **billions** of photos online
• Photographic record of the surface of the earth
• Photo sharing on a massive scale
> 6.3 billion photos on Photobucket, > 10 billion on Facebook
Feature detection
Detect features using SIFT [Lowe, IJCV 2004]
Feature detection
Detect features using SIFT [Lowe, IJCV 2004]
Feature detection
Detect features using SIFT [Lowe, IJCV 2004]
Feature matching
Match features between each pair of images
Structure from motion

\[
\begin{align*}
\text{minimize} \quad & f(R, T, P) \\
\end{align*}
\]
Incremental structure from motion

- Automatically select an initial pair of images
Incremental structure from motion
Incremental structure from motion
Photo Tourism
Yosemite
Overview

- Finding Paths through the World’s Photos
- Large-scale 3D reconstruction
- Ongoing and future projects
Libration

From Wikipedia, the free encyclopedia

Not to be confused with Liberation or Libration.

In astronomy libration (from the Latin verb *librare* "to balance, to sway", cf. *libra* "scales") refers to the various orbital conditions which make it possible to see more than 50% of the moon's surface over time, even though the front of the Moon is tidally locked to always face towards Earth. By extension, libration can also be used to describe the same phenomenon for other orbital bodies that are nominally locked to present the same face. As the orbital processes are repetitive, libration is manifested as a slow rocking back and forth (or up and down) of the face of the orbital body as viewed from the parent body, much like the rocking of a pair of scales about the point of balance.

In the specific case of the Moon's librations, this motion permits a terrestrial observer to see slightly differing halves of the Moon's surface at different times. This means that a total of 59% of the Moon's surface can be observed from Earth.

There are three types of libration:

- **Libration in longitude** is a consequence of the Moon's orbit around Earth being somewhat eccentric, so that the Moon's rotation sometimes leads and sometimes lags its orbital position.

- **Libration in latitude** is a consequence of the Moon's axis of rotation being slightly inclined to the normal to the plane of its orbit around Earth. Its origin is analogous to the way in which the *seasons* arise from Earth's revolution about the Sun.

- **Diurnal libration** is a small daily oscillation due to the Earth's rotation, which carries an observer first to one side and then to the other side of the straight line joining Earth's center to the Moon's center, allowing the observer to look first around one side of the Moon and then around the other. This is because the observer is on the surface of the Earth, not at its centre.
3D navigation – Photo Tourism

Demo
Continuous navigation

Demo
• What are good controls for exploring a given 3D scene?
Navigation controls

• Our approach: Derive good controls from the distribution of viewpoints in a large photo collection
3D navigation controls

Problem: 3D scenes are difficult to navigate

• How does the user know where to go?
• How does the user get there?
• Good controls are scene dependent

Solution: exploit the distribution of photos to derive good controls
Finding paths through photo collections
Scene-specific navigation controls

- Orbits
- Panoramas
- Representative viewpoints
- Optimized paths between views
Pantheon
[Simon, et al., Scene summarization for Online Image Collections, ICCV ’07]
Optimized paths between views
Personal photo tour
Trevi Fountain
Overview

- Finding Paths through the World’s Photos
- Large-scale 3D reconstruction
- Ongoing and future projects
Large-scale reconstruction

• Most of the models shown so far have had ~500 images

✓ We found 39,609 results for photos matching colosseum and rome.

• How do we scale from 100s to 10,000s of images?

• Observation: Internet collections represent very non-uniform samplings of viewpoint

 [Snavely, Seitz, Szeliski, CVPR 2008]
The Pantheon
Stonehenge
Stonehenge

Full graph

Skeletal graph
Skeletal set

• Goal: given an image graph G_I, select a small set S of important images to reconstruct, bounding the loss in quality of the reconstruction

• Reconstruct the skeletal set S
• Estimate the remaining images with much faster pose estimation steps
Properties of the skeletal set

• Should touch all parts of G

 Dominating set

• Should form a single reconstruction

 Connected dominating set

• Should result in an *accurate* reconstruction
Representing information in a graph

• What kind of information?
 – No absolute information about camera positions
 – Each edge provides information about the relative positions of two images
 – ... but not all edges are equally informative

• We model information with the uncertainty (covariance) in pairwise camera positions
Representing information in a graph
Representing information in a graph

- Uncertainty grows with the length of the path
- Shortest path gives a bound on expected uncertainty
- We use the trace of the covariance matrix as our scalar edge weights
Representing information in a graph

- Uncertainty grows with the length of the path
- Shortest path gives a bound on expected uncertainty
- We use the trace of the covariance matrix as our scalar edge weights
Representing information in a graph

Want to find a subgraph with:

a) many leaves
b) small growth in estimated uncertainty between any pair of nodes
t-spanner problem

- Given a graph G, find a spanning subgraph G' such that, for every pair of vertices (P, Q), the distance between P and Q in G' is at most t times the distance between P and Q in G

G: the original graph

t: the stretch factor

Applications in wireless ad hoc networking

- Peleg & Schäffer 1989
- Althöfer, et al. 1993
- Li, et al. 2000
- Alzoubi 2003
Stonehenge

Full graph

Skeletal graph ($t=16$) (leaves omitted)
Maximum-leaf t-spanner problem

• Given a graph G_I, and a stretch-factor t, find a subgraph G_S which:
 a) is a t-spanner
 b) has the largest number of leaves

• We construct G_S by adding edges one at a time to an empty graph, until a) is satisfied
Properties of approach

• Results in a connected reconstruction (when possible)

• Bounds expected increase in uncertainty of reconstructed model (bound is defined by t)

• Remaining information can be used to refine the model after the initial reconstruction
Results
Pantheon

Full graph

Skeletal graph ($t=16$)
Skeletal reconstruction
101 images

After adding leaves
579 images

After final optimization
579 images
Pisa

1093 images registered (352 in skeletal set)
Trafalgar Square

2973 images registered (277 in skeletal set)
Statue of Liberty

7834 images registered (322 in skeletal set)
Running time

- Stonehenge: Full reconstruction (~10 days)
- St. Peters: Full reconstruction (~10 days)
- Pantheon: Full reconstruction (~50 days)
- Pisa: Full reconstruction (~50 days)
- Trafalgar: Full reconstruction (~50 days)

Legend:
- Blue: Full reconstruction
- Red: Skeletal reconstruction
- Green: Skeletal reconstruction + BA
Dense 3D Modeling

Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, Steve Seitz, ICCV 2007
Overview

• Finding Paths through the World’s Photos

• Large-scale 3D reconstruction

• Ongoing and future projects
Rebuilding Rome

• How much of the city of Rome can be reconstructed from Internet photos?
We found 2,379,801 results matching rome or roma.
1,000,000 images of Rome
Rebuilding Rome in a day

- Download a million (or more) photographs of Rome from Flickr.com.
- Match the photos to find corresponding points.
- Build a three dimensional model of the city by incrementally adding photographs to it.
- Do all of the above in a fully distributed manner on a 1000 node cluster in 24 hours.
How do we fill in the gaps?
Can we turn this into a game?

• Use the millions of digital cameras / cellphones as a distributed world capture device

• Use humans to help where computer vision fails
See Map
Points you own, points everyone else owns. Pan, zoom in.

Suggestion View
Show nearby “edge” images, features marked as 3D points and non-3D points, try to take pictures of the non-point features that still connect to the model.

Take Photos
Interactive, feedback for each image, resolve ambiguities.

Get Back Report
1 photo added
40 points created
150 points enhanced
New score: 4,500!
Thank you!