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Big Data in Science

Data growing exponentially, in all science

All science is becoming data-driven

This is happening very rapidly

Data becoming increasingly open/public

Non-incremental!

Convergence of physical and life sciences

through Big Data (statistics and computing)

The “long tail” is important

A scientific revolution in how discovery takes place
=> a rare and unique opportunity



THOUSAND YEARS AGO
science was empirical :
describing natural phenomena S

LAST FEW HUNDRED YEARS a| 4nGp _ ¢
theoretical branch using models,
generalizations

LAST FEW DECADES
a computational branch simulating
complex phenomena

TODAY

data intensive science, synthesizing theory,
experiment and computation with statistics
» new way of thinking required!
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Scientific data is doubling every year, reaching PBs
— CERN is at 22PB today, 10K genomes ~5PB

Data will never will be at a single location
Architectures increasingly CPU-heavy, |O-poor
Scientists need special features (arrays, GPUs)

Most data analysis done on midsize BeoWulf clusters
Universities hitting the “power wall”

Soon we cannot even store the incoming data stream
Not scalable, not maintainable...
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Multi-faceted challenges
New computational tools and strategies

... hot just statistics, not just computer science,
not just astronomy, not just genomics...

Need new data intensive scalable architectures

Science is moving increasingly from hypothesis-
driven to data-driven discoveries

Astronomy has always been data-driven....
now this is becoming more accepted in other
areas as well
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“The Cosmic Genome Project’

Two surveys in one

— Photometric survey in 5 bands
— Spectroscopic redshift survey

Data is public

— 2.5 Terapixels of images => 5 Tpx

— 10 TB of raw data => 120TB processed
— 0.5 TB catalogs => 35TB in the end

Started in 1992, finished in 2008

Database and spectrograph
built at JHU (SkyServer)
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* Prototype in 21st Century data access
— 993 million web hits in 10 years
— 4,000,000 distinct users vs. 15,000 astronomers
— The emergence of the “Internet scientist”
— The world’s most used astronomy facility today

— Collaborative server-side analysis done by 5K
astronomers (30%)

« GalaxyZoo (Lintott et al)
— 40 million visual galaxy classifications by the public
— Enormous publicity (CNN, Times, Washington Post, BBC)
— 300,000 people participating, blogs, poems...
— Oiriginal discoveries by the public (Voorwerp, Green Peas)
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Astronomy

Sloan Digital Sky Survey tops astronomy citation list

NASA'’s Sloan Digital Sky Survey (SDSS) is
the most significant astronomical facility,
according to an analysis of the 200 most
cited papers in astronomy published in
2006. The survey, carried out by Juan
Madrid from McMaster University in
Canada and Duccio Macchetto from the
Space Telescope Science Institute in
Baltimore, puts NASA's Swift satellite in
second place, with the Hubble Space
Telescope in third (arXiv:0901.4552).
Madrid and Macchetto carried out
their analysis by looking at the top 200
papers using NASA’s Astrophysics Data
System (ADS), which charts how many
times each paper has been cited by other
research papers. If a paper contains data
taken only from one observatory or
satellite, then that facility is awarded all
the citations given to that article.
However, if a paper is judged to contain
data from different facilities — say half
from SDSS and half from Swift - then both
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Rank Telescope

Sloan Digital Sky Survey
Swift
Hubble Space Telescope
European Southem Observatory
Keck
Canada—France-
Hawaii Telescope
Spitzer
Chandra
Boomerang

0 High Energy Stereoscopic
System
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facilities are given 50% of the citations
that paper received.

The researchers then totted up all the
citations and produced a top 10 ranking
(see table). Way out in front with 1892
citations is the SDSS, which has been

Citations Ranking

in 2004
1892 1
1523 N/A
1078 3
813 2
572 5
521 N/A
469 N/A
381 7
376 N/A
297 N/A

running since 2000 and uses the 2.5m
telescope at Apache Pointin New Mexico
to obtain images of more than a quarter
of the sky. NASA’s Swift satellite, which
studies gamma-ray bursts, is second with
1523 citations, while the Hubble Space
Telescope (1078 citations) is third.
Although the 200 most cited papers
make up only 0.2% of the references
indexed by the ADS for papers published
in 2006, those 200 papers account for
9.5% of the citations. Madrid and
Macchetto also ignored theory papers on
the basis that they do not directly use any
telescope data. A similar study of papers
published in 2004 also puts SDSS top
with 1843 citations. This time, though,
the European Southern Observatory,
which has telescopes in Chile, comes
second with 1365 citations and the
Hubble Space Telescope takes third spot
with 1124 citations.
Michael Banks

Physics World March 2009
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Loading (and scrubbing) the data

Organizing the data (20 queries, self-documenting)
Accessing the data (small and large queries, visual)
Delivering the data (workbench)

Analyzing the data (spatial, scaling...)
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June 2001: EDR
Now at DR5, with 2.4TB

3 versions of the data
— Target, Best, Runs
— Total catalog volume 5TB

Data publishing: once published, must stay
SDSS: DR1 is still used .
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LSST PanSTARRS
8.4m 3.2Gpixel 1.8m 1.4Gpixel
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Why Is Astronomy Interesting?

Approach inherently and traditionally data-driven
— Cannot do experiments...

Important spatio-temporal features

Very large density contrasts in populations
Real errors and covariances

Many signals very subtle, buried in systematics

Data sets large, pushing scalability
— LSST will be 100PB

“Exciting, since it is worthless!”

— Jim Gray
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Most challenges are sociological, not technical

Trust: scientists want trustworthy, calibrated data with
occasional access to low-level raw data

Career rewards for young people still not there
Threshold for publishing data is still too high
Robust applications are hard to build (factor of 3...)
Archives (and data) on all scales, all over the world

Astronomy has successfully passed the first hurdles...
but it is a long journey... no instant gratification
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HPC is an instrument in its own right

Largest simulations approach petabytes
— from supernovae to turbulence, biology and brain modeling

Need public access to the best and latest through
Interactive numerical laboratories

Creates new challenges in

— how to move the petabytes of data (high speed networking)
— How to look at it (render on top of the data, drive remotely)
— How to interface (virtual sensors, immersive analysis)

— How to analyze (algorithms, scalable analytics)



Data Access is Hitting a Wall

I
FTP and GREP are not adequate

You can GREP 1 MB in a second e Youcan FTP 1 MBin 1 sec

You can GREP 1 GB in a minute « Youcan FTP 1 GB/ min =1s/g)

You can GREP 1 TB in 2 days e ... 2days and 1K$

You can GREP 1 PB in 3 years « ... 3yearsand 1M$

Oh!, and 1PB ~4,000 disks

At some point you need
indices to limit search
parallel data search and analysis

This is where databases can help

Slide from Jim Gray (2005)




« 150TB in less than 10 days from Oak Ridge to JHU

Silver River Transfer

using a dedicated 10G connection
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“... the last unsolved problem of classical physics...” Feynman

 Understand the nature of turbulence

— Consecutive snapshots of a large
Ssimulation of turbulence:
now 30 Terabytes

— Treat it as an experiment, play with
the database!

— Shoot test particles (sensors) from
your laptop into the simulation,
like in the movie Twister

— Next: 70TB MHD simulation

* New paradigm for analyzing simulations!
with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS)
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Cosmological Simulations

e e N F

In 2000 cosmological simulations had 10'° particles and
produced over 30TB of data (Millennium)

* Build up dark matter halos

« Track merging history of halos

» Realistic distribution of galaxy types
« Reference for the whole community

« Today: simulations with 102 particles and PBs of output
are under way (MillenniumXXL, Silver River, etc)

« Hard to analyze the data afterwards
« What is the best way to compare to real data?
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The Milky Way Laboratory

« Use cosmology simulations as an immersive
laboratory for general users

* Via Lactea-ll (20TB) as prototype, then Silver River
(50B particles) as production (15M CPU hours)

« 800+ hi-rez snapshots (2.6PB) => 800TB in DB

« Users can insert test particles (dwarf galaxies) into
system and follow trajectories in . R
pre-computed simulation ' ol

« Users interact remotely with
a PB in ‘real time’

Madau, Rockosi, Szalay, Wyse, Silk, Kuhlen,
Lemson, Westermann, Blakeley :




Data-Intensive Research at JHU

I
*Sloan Digital Sky Survey « Computational Biology
*Virtual Observatory * High Throughput Genomics
Pan-STARRS * Biophysics
LSST * Neuroscience/ fMRI
Earth circulation modeling » OncoSpace
*Turbulence * BIRN
LHC * Life Under Your Feet
*IDIES » GrayWulf
*Data Conservancy  Amdanhl-Blades
*14M » Data-Scope
*Discovery grants * CDI/ITR/MRI...

Institute for Data Intensive Engineering and Science

idies
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Common Analysis Patterns

e e s

Huge amounts of data, aggregates needed
— But also need to keep raw data
— Need for parallelism
— Heavy use of structured data, multi-D arrays

Requests enormously benefit from indexing
Computations must be close to the data!

Very few predefined query patterns
— Everything goes....

— Rapidly extract small subsets of large data sets
— Geospatial/locality based searches everywhere

Data will never be in one place

— Remote joins will not go away D B'
. [ |
No need for transactions

Data scrubbing is crucial
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One shoe does not fit all!
* Diversity grows naturally, no matter what

* EVOIUtiOnary pressures help «  Large floating point calculations move
. to GPUs
 Individual groups want

« Big data moves into the cloud
specializations (private or public)

 RandomlO moves to Solid State Disks
High-Speed stream processing emerging

At the same time
* noSQL vs databases vs column store
 \What remains in the middle? vs SciDB ...

« Common denominator is Big Data
« Data management
 Everybody needs it, nobody enjoys doing it
« We are still building our own... over and over



Gene Amdahl (1965): Laws for a balanced system

I. Parallelism: max speedup is S/(S+P)

ii. One bit of IO/sec per instruction/sec (BW)

iii. One byte of memory per one instruction/sec (MEM)

Modern multi-core systems move farther
away from Amdahl’'s Laws
(Bell, Gray and Szalay 2006)
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|
System CPU GIPS RAM diskiO Amdahl

count | [GHz] | [GB] | mBss] [ RAM | 10
BeoWulif 100 300 200 3000 0.67 0.08
Desktop 2 6 4 150 0.67 0.2
Cloud VM 1 3 4 30 1.33 0.08
SC1 212992 150000 18600 16900 0.12 0.001
SC2 2090 5000 8260 4700 1.65 0.008

GrayWulf 416 1107 1152 70000 1.04 0.506




Amdahl number
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Amdahl Numbers for Data Sets

1.E+00
(a)

1.E-01 I

1.E-02

Data Analysis

1.E-03 -

1.E-04

1.E-05 ; :
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Disk space, disk space, disk space!!l!

Current problems not on Google scale yet:
— 10-30TB easy, 100TB doable, 300TB hard
— For detailed analysis we need to park data for several months

Sequential IO bandwidth

— If analysis is not sequential for large data set, we cannot do it

How do can move 100TB within a University?

— 1Gbps 10 days

— 10 Gbps 1 day (but need to share backbone)
— 100 Ibs box few hours

From outside?
— Dedicated 10Gbps or FedEx
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Stu Feldman: Extreme computing is about tradeoffs

Ordered priorities for data-intensive scientific computing

1. Total storage (-> low redundancy)

2. Cost (-> total cost vs price of raw disks)

3. Sequential IO  (-> locally attached disks, fast ctrl)

4. Fast streams (->GPUs inside server)

5. Low power (-> slow normal CPUSs, lots of disks/mobo)

The order will be different every year...
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Funded by NSF MRI to build a new ‘instrument’ to look at data
Goal: 102 servers for $1M + about $200K switches+racks

Two-tier: performance (P) and storage (S)

Large (6.5PB) + cheap + fast (500+GBps), but ...
..a special purpose instrument

Revised

1P 1S | AP | AIIS | Full
servers 1 1 90 6 102
rack units 4 34 360, 204 564
capacity 24 7200 2160, 4320 6480 TB
price 8.8 57 8.8 57, 792 $K
power 1.4 100 126 60 186/ kKW
GPU* 1.35 0 121.5 0 122 TF
seq IO 5.3 3.8 477 23] 500 GBps
random IO] 240 54 21600, 324 21924 kIOPS
netwk bw 10 200 900] 240 1140 Gbps
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Everything is a Fractal
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The Data-Scope created a lot of excitement but also
a lot of fear at JHU...

— Pro: Solve problems that exceed group scale, collaborate
— Con: Are we back to centralized research computing?

Clear impedance mismatch between monolithic large
systems and individual users
— Multi-tier architecture needed, like the LHC model

eScience needs different tradeoffs from eCommerce
Larger systems are more efficient
Smaller systems have more agility
How to make it all play nicely together?
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Economy of scale is clear

However:
— Commercial clouds are too expensive for Big Data
— Smaller private clouds with special features are emerging
— May become regional gateways to larger-scale centers
— Trust!l!!

The “Long Tail” of a huge number of small data sets
— The integral of the “long tail” is big!

Facebook: bring many small, seemingly unrelated
data to a single cloud and new value emerges
— What is the science equivalent?



Technology+Sociology+Economic:

v

Neither of them is enough

— We have technology changing very rapidly

— Sensors, Moore's Law

— Trend driven by changing generations of technologies

Sociology is changing in unpredictable ways
— YouTube, tagging, ...

— In general, people will use a new technology if it is
» Offers something entirely new
» Or substantially cheaper
» Or substantially simpler

It is not granted that if we build it they will come...
Funding is essentially level
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Changing Sociology
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« Broad sociological changes
— Convergence of Physical and Life Sciences
— Data collection in ever larger collaborations
— Virtual Observatories: CERN, VAO, NCBI, NEON, OOiI, ...
— Analysis decoupled, off archived data by smaller groups
— Emergence of the citizen/internet scientist
— Impact of demographic changes in science

* Need to start training the next generations
— [l-shaped vs I-shaped people
— Early involvement in “Computational thinking”
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Science is increasingly driven by data (large and small)
Large data sets are here, COTS solutions are not
Changing sociology

From hypothesis-driven to data-driven science

We need new instruments: “microscopes” and
“telescopes” for data

There is also a problem on the “long tail”

Similar problems present in business and society
Data changes not only science, but society

A new, Fourth Paradigm of Science is emerging...

A convergence of statistics, computer science,
physical and life sciences.....



“If | had asked people what they wanted, they
would have said faster horses...”

Henry Ford

From a recent book by Eric Haseltine:
“Long Fuse and Big Bang”



