
Problems, Wise Patterns,
and Process

Prof. James Coplien
North Central College
University of Manchester
Institute of Science and
Technology

The child's wonder
At the old moon
Comes back nightly.
She points her finger
To the far silent yellow thing
Shining through the branches
Filtering on the leaves a golden sand,
Crying with her little tongue, "See the moon!"
And in her bed fading to sleep
With babblings of the moon on her little mouth.

Having lost the dream

   Leaves of poplars pick Japanese prints against the west.	

   Moon sand on the canal doubles the changing pictures.	

   The moon’s good-by ends pictures.	

   The west is empty. All else is empty. No moon-talk at all now.	

   Only dark listening to dark.

   —Sandberg, 1918

The deeper dream

  Integrating technology and nature, the
universe

  The space program as a benefit to society
  Where is the archive of those ideas?

A similar plight in software

  Our disciplines are similar:
  High cost of failure
  High cost — period
  In the public eye
  Traditional reliance of mature technology
  A century of technology to build on (Bell,

Goddard)
  But today the basics are fading

Technological Science and
Natural Science

  Technological:
  Humankind in control
  Preformed parts — the Cartesian legacy

  Natural
  Harmonizing with nature
  Wholes
  Repair

  These approaches offer insight into
design

The Architect Alexander

   But it is impossible to form anything which
has the character of nature by adding
preformed parts.

   When parts are modular and made before the
whole, by definition then, they are identical,
and it is impossible for every part to be
unique, according to its position in the whole.
(Alexander, 1979: p. 368)

Indian Hill, 1963

Indian Hill, 1976

Indian Hill, 1988

What is a pattern?
   Center of Gravity
   …there is an inherent struggle between the center of pressure and the center of gravity in a high-

speed missile. Once the PAYLOAD SPACE and FUEL LOADING are arranged, one must engineer the
rocket for balance.

   * * *
   The pressure on the fins and the mass of the engine compete for control, each exerting

leverage on the rocket direction. Most of the rocket’s mass is in the rear, with lighter payload
frequently residing in front. This problem is aggravated in multi-stage solid-fuel configurations,
since it moves the center of gravity even further toward the back.

   You can always over-engineer the fins to guarantee stability, but the drag reducess the apogee.
   Therefore:
   Locate the center of pressure one-and-a-half body tube widths behind the center of

gravity. This provides enough aerodynamic correction at speed to keep the missile from “falling
over”, and it keeps going in the same direction.

   * * *
   A good center of gravity will add stability which not only ensures the rocket will go in the intended

direction, but that it will fly with less wobble and achieve higher performance. Adjust CENTER OF
GRAVITY with NOSE WEIGHT, potentially elongating the body tube, and TRAILING FIN to move the
center of pressure back.

Center of Pressure

Center of Gravity

1.5 Body Tube Widths

How does a pattern work?

  One at a time, compose patterns
  Tailor each pattern to what has been built before
  A process of continuous adaptation
  Piecemeal growth to build systems
  Local Repair to add structure
  A system is always in repair

What’s the idea?

  Marketed as knowledge capture
  Patterns compose to generate systems
  The patterns that generate systems are

called a pattern language
  A pattern provides context for other

patterns
  Each pattern unfolds in the context where

it is applied

Half-Object Plus Protocol

THREE PART CALL PROCESSING
(ADD A SWITCH)

Problem: Efficient interfacing between many signaling types.
Context: Toll switching where each switching center must communicate with many various

signaling types.
Forces: Want flexibility to interwork between any signaling types.
   More signaling types are being developed constantly.
   There are some common functions that are signaling type independent.
   It is expensive to make changes to every existing signaling type to add new functions.
   Want centralization and standardization, for ease of maintenance and to facilitate

understanding.
Solution: Distribute call processing into something that can be processed by three
   separate pieces: Incoming trunk handling, Outgoing trunk handling, and non-trunk specific

(common) pieces.
Resulting Context: The parts of the software that know about signaling types only need to

know about the ones that they process. They have been isolated from all other signaling
types.

   Non signaling specific types of functions are concentrated into separate modules for ease
of maintenance.

THREE-PART CALL PROCESSING, continued

Rationale: Easily extensible. To add new signaling types, add the
trunk handlers and make minor changes to some common
functions.

   This pattern applies for the same reason that we have telephone
switches—the complexity of direct connections between each node
in a network.

Author: Robert Hanmer, 5/9/1995
Reference: P. D. Carestia, F. S. Hudson. No. 4 ESS: Evolution of the

Software Structure, BSTJ, Vol 60, No. 6, Part 2

LEAKY BUCKET
COUNTERS

   Pattern: Leaky bucket counters
   Problem: How do you deal with transient faults?
   Context: 1A/1B processor 4ESS. As stores (dynamic RAM) got weak, we'd have a store

taking a trap refresh (parity) failure. This is applicable both to 1A dynamic RAM and 1B
static RAM.

   Forces: You want a hardware module to exhibit hard failures before taking drastic
action. Some failures come from the environment, and should not be blamed on the
device.

   Solution: We count faults or events (usually faults) and decrement the count on a
periodic basis to deal with transient faults. There are different leak rates for different 1A
subsystems: a half-hour for the store subsystem; other subsystems include the
interface bus, CC, etc. We developed a strategy for 1A dynamic RAM. On the first fault
in a store (within the timing window), we'd take the store out of service (OOS), diagnose
it, and then automatically restore it to service (if it failed -- but usually they never failed
diagnostics at this point). On the second, third, and fourth failure (within the window),
you just leave it in service. For the fifth episode within the timing window, take the unit
OOS, diagnose it, and leave it out.

   Resulting Context: A system where errors are isolated and handled (by taking devices
OOS), but where transient errors (e.g., room humidity) don't cause unnecessary OOS
action.

   Rationale: Goes into all our software. The history is instructive: in old call
stores, why did we collect data? For old call stores, the field replacement unit
(FRU) was a circuit pack, while the failure group (FG) was a store comprising 12
or 13 packs. We needed to determine which pack is bad. Memory may be
spread across 7 circuit backs; the transient bit was only one bit, not enough to
isolate the failure. By recording data from four events, we were better able to
pinpoint (90% accuracy) which pack was bad, so craft didn't have to change 7
packs. Why go five failures before taking a unit OOS? By collecting data about
failure on second, third, and fourth time, you are making sure you know the
characteristics of the error and are reducing the uncertainty about the FRU. By
the fifth time, you know it's sick and need to take it OOS. Decreasing the count
on the store one per half hour creates a sliding time window. If count clears
(goes to zero), the store is considered fine at that point. Humidity, heat, and
other environmental problems could cause transient errors which should be
treated differently (i.e., pulling the card does no good).

See, for example, Fool Me Once.

Uses pattern Riding Over Transients.

LEAKY BUCKET
COUNTERS, continued

   As an element in the world, each pattern is a
relationship between a certain context, a certain
system of forces… and a certain spatial
configuration which allows these forces to
resolve themselves.

   As an element of language, a pattern is an
instruction, which shows how this spatial
configuration can be used, over and over again,
to resolve the given system of forces, wherever
the context makes it relevant. — TTWOB, 247

A Small Pattern Language

Five Minutes of	

No escalation Messages	

Minimize Human	

Intervention	

Integrity First	

And Always	

Exhaustive	

Configuration	

Cycle	

Fool me	

Once	

People Know	

Best	

Riding Over	

Transients	

Leacky	

Buclet	

Counters	

What, then, is problem-
solving?

  Guided by experience and metaphor
  Generativity: building systems that solve

their own problems
  High-reliability as contrasted with fault

tolerance
  The human as part of the system

Patterns and the future of
our disciplines

  The human component is ever-present
  We must value the past
  We should try to interpret current

problems—and successes—in terms of
the past

  We should leave a legacy of knowledge,
and a legacy of beauty, for our children

