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The Plan:

• Background: What is the image reconstruction problem?

• Using optimization to improve the quality of the reconstructions.

• Using confidence images to provide information on the reliability of the
reconstructions.
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The image reconstruction problem

Suppose we have taken an image of some scientific data ...
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... Or suppose we have taken an image of some medical data...
blurred image
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Goals

Our goals are to

• reconstruct the image as well as possible.

• give the scientist or clinician useful information about the reliability of
the reconstruction.
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For example, can we obtain an estimate and confidence limits on the
brightness of a star...
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... or can we give the clinician some confidence in the reality of a suspected
tumor...

cg restored image
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The underlying difficulty
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The problem

Systems of first kind integral equations:

yi ≡ y(ti) =

∫ b

a

K(ti, ξ)x(ξ) dξ + εi , i = 1, 2, . . . ,m

• Ki(ξ) ≡ K(ti, ξ) are known (previously measured or calculated)
response functions of the instrument,

• the yi are measurements made on a discrete mesh t1, t2, . . . , tm,

• the εi are random, zero-mean measuring errors.

Discretizing gives a linear regression model

y = Kx∗ + ε ,

Where y is the m-vector of measurements, K is a known m × n matrix,
with m ≥ n, and x∗ is an unknown n-vector whose components are either
discrete values of x(ξ) on some mesh ξ1, ξ2, . . . , ξn, or are the unknown
coefficients in a truncated expansion for x(ξ).
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The assumption

The vector ε is an m-vector of random measuring errors satisfying

E(ε) = 0 , E
(

ε ε
T
)

= S 2 ,

where E is the expectation operator and S 2 is the positive definite variance
matrix.

• The variances can be estimated as the squares of the half-lengths of the
±1-sigma error bars on the measurements.

• An analyst who fails to use this information implicitly assumes that
S 2 = s2Im where Im is the m-th order identity matrix and s is an
unknown scalar that can be, but usually is not, estimated from the sum
of squared residuals for the least squares solution.

• Using variance information can greatly improve estimates of x.

We assume that S is a known matrix and that the errors are samples from
a multivariate normal distribution, i.e., that ε ∼ N( 0 , S 2 ).
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Scaling the model

Original linear regression model:

y = Kx∗ + ε , ε ∼ N( 0 , S 2 ) .

Scaled linear regression model:

b ≡ S −1y , A ≡ S −1K , η ≡ S −1
ε .

Then η ∼ N( S −10 , S −1S 2[S −1]T ), so the scaled model can be written

b = Ax∗ + η , η ∼ N( 0 , Im ) .

As a consequence,
‖η‖2 ∼ χ2(m).
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An example: The image reconstruction problem
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y = Kx∗ + ε ,

• y : the observed image

• K : the “blurring matrix”

• x : the true image
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Solutions to our problem

r2
min = min

x

{

(b−Ax)T (b−Ax)
}

.

Linear regression estimate:

x̂ =
(

ATA
)−1

ATb

is the best linear unbiased estimate of x∗.

It is well known that for ill-posed problems, the elements of x̂ are
pathologically sensitive to small variations in the elements of b, so despite
the desirable statistical properties of the estimator x̂, the measuring errors
generally make it totally unphysical and wildly oscillating.

We’ll see an example of this shortly.
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Regularized Solution Estimates

Insight into the failure of the least squares method is obtained by use of the
singular value decomposition (SVD) of A:

A = UΣVT =U

[

Σ1

0

]

VT , Σ1 = diag(σ1, σ2, . . . , σn) .

Here σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and

UTU = Im = UUT , VTV = In = VVT .

Least squares solution:

x̂ =
n

∑

i=1

ui
Tb

σi
vi,

r2
min = ‖b−Ax̂‖2 =

m
∑

i=n+1

(ui
Tb)2 .
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The Tikhonov Family of Regularized Solutions:

Rather than setting small singular values to zero, we can increase them so
that they lead to a smaller contribution to the solution estimate.

The Tikhonov regularization estimate is given by

x̃λ =
(

ATA + λ2In

)−1
ATb ,

where λ is a parameter chosen to balance the competing demands of
fidelity to the measurements and insensitivity to measurement errors.

This interpretation of λ comes from the fact that the vector x̃λ is the
solution to the minimization problem

min
x

‖b−Ax‖2 + λ2‖x‖2.
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Some history of Tikhonov regularization

• This strategy is generally attributed to Tikhonov (1963).

• It was also pioneered by Phillips (1962) and Twomey (1963).

• Golub and Kahan (1965) noted its relationship to the theoretical
treatment given by Smithies (1958) for the singular functions and
singular values of first kind integral equations.

• Foster (1961) relates it to Wiener-Kolmogorov filtering and refers to
Riley (1955) for the formula.

• A statistical variant, called ridge regression, was independently
developed by Hoerl and Kennard (1970).
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Optimization and Validation using the “eye” norm
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An example: Can we deblur this image?
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Tikhonov lambda= 0.000000
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Tikhonov lambda= 0.000050
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Tikhonov lambda= 0.000167
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Tikhonov lambda= 0.000950

50 100 150 200 250

50

100

150

200

250

24



Tikhonov lambda= 0.001000
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Tikhonov lambda= 0.001500
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Tikhonov lambda= 0.002500
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Tikhonov lambda= 0.005000
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Tikhonov lambda= 0.010000
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Tikhonov lambda= 0.050000
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What we have demonstrated:

• The ill-conditioning of the matrix and the noise in the data make image
deblurring very difficult.

• We can deblur well using Tikhonov regularization.

• Choosing the regularization parameter is easy if the “eye” norm can be
used.

• In general, a good regularization parameter is hard to find.
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Estimators, means, and variances

These estimates can be written as

VTx = FΣ†UTb,

where F is an n × n diagonal matrix specific to each method.

The entries of F are called filter factors.

• Least squares: F = I.

• Tikhonov regularization:

fj =
σ2

j

σ2
j + λ2

.

• TSVD: the first p diagonal entries of F are 1 and the others are zero.
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The statistical distributions of our estimators

Estimator x = VFΣ†UTb r = U2U
T
2 b + U1(In − F)UT

1 b

Mean x∗ −V(In − F)VTx∗ U1(In − F)Σ1V
Tx∗

Variance V(FΣ−1
1 )2VT U2U

T
2 + U1(In − F)2UT

1

Each of the estimators is normally distributed.

Regularization reduces variance in x, increases bias.
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The statistical properties of computed solutions
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Behavior of the residual

Let x̃ be an estimate of x∗ and let

r̃ = b−Ax̃

be the corresponding residual vector. Since the regression model can also
be written

η = b−Ax∗ ,

it is clear that x̃ is acceptable only if r̃ is a plausible sample from the
distribution from which η is drawn.
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Since
E

{

‖η‖2
}

= m , Var
{

‖η‖2
}

= 2m ,

these two quantities provide rough bounds for the ‖r̃‖2 that might be
expected from a reasonable estimate of x∗: an estimate that gives

m −
√

2m ≤ ‖b−Ax̃‖2 ≤ m +
√

2m

would be reasonable.

These indicators can be sharpened and quantified by using percentiles of
the cumulative distribution function for χ2(m).

We will see how to use this information in choosing among a family of
possible regularized estimates for x∗.
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Choosing a Regularization Parameter

The residual norm is

• a monotonically decreasing function of the regularization parameter p
for the TSVD method.

• a monotonically increasing function of the regularization parameter λ for
Tikhonov’s method.

Similarly, the norm of the estimated solution is

• a monotonically increasing function of p

• a monotonically decreasing function of λ.

We discuss various methods for choosing the regularization parameter.
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Well-Known Methods

• The most basic choice of regularization parameter is via Morozov’s
Discrepancy Principle (1966). This method chooses the regularization
parameter so that the norm of the residual is approximately equal to its
expected value.

• An alternate strategy is to choose λ or p to minimize the generalized
cross-validation (GCV) function

G(λ) =

m
∑

k=1

[

bk −
(

Ax̃
(k)
λ

)

k

]2

,

where x̃
(k)
λ is the estimate when the kth measurement bk is omitted.

The basic idea, first introduced by Wahba (1977), is to choose λ to
make Ax̃λ the best overall predictor for missing data values.

38



• A third strategy, often used when the error cannot be assumed to be
normally distributed, is based on the L-curve first introduced by Hanson
and Lawson (1974) and further developed by P. C. Hansen (1992).

In current use, the L-curve for Tikhonov regularization is a plot of
log ‖ x̃λ ‖ versus log ‖ b−Ax̃λ ‖ for a range of positive values of λ.
The λ chosen corresponds to the point in the corner where the
curvature of the curve is maximized.

The L-curve for TSVD is defined in a similar way, but consists of
discrete points for various values of p; curvature can be defined as the
curvature of a smoothing cubic spline.
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Useful statistical diagnostics

Rust (1998, 2000) suggested several diagnostics for judging a regularized
solution x̃ with residual r̃.

Diagnostic 1. The residual norm-squared should be within two standard
deviations of the expected value of ‖η‖2. This quantifies the Morozov
discrepancy principle.

Diagnostic 2. The elements of η are drawn from a N(0, 1) distribution, and
a graph of the elements of r̃ should look like samples from this distribution.
(In fact, a histogram of the entries of r̃ should look like a bell curve.)

Diagnostic 3. We consider the elements of both η and r̃ as time series,
with the index i (i = 1, . . . , m) taken to be the time variable. Since
η ∼ N(0, Im), the ηi form a white noise series. Therefore the residuals r̃

for an acceptable estimate should constitute a realization of such a series.
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Diagnostics: Periodogram

A formal test of Diagnostics 2 and 3, used by Rust (2000), is based on a
plot of the periodogram, which is an estimate of the power spectrum on
the frequency interval 0 ≤ f ≤ 1

2T
, where T is the sample spacing for the

time variable.

Here, the time variable is the element number i, so T = 1. The
periodogram is formed by

• zero-padding the time series to length N (e.g., a power of 2),

• taking the discrete Fourier transform of this zero-padded series,

• taking the squares of the absolute values of the first half of the
coefficients.

This gives us the periodogram z of values corresponding to the frequencies
k/NT , k = 0, . . . , N/2.
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Diagnostics: Cumulative Periodogram

The cumulative periodogram c is the vector of partial sums of the
periodogram, normalized by the sum of all of the elements.

• For an ideal residual, periodogram ordinates are multiples of independent
χ2(2) samples and hence the vector elements are distributed like an
ordered sample of size N/2 from a uniform (0,1) distribution.

• Therefore, the ideal cumulative periodogram is a straight line between 0
and 1 as the frequency varies between 0 and 0.5, so we expect its length
to be close to 1.118 (taking T = 1).

• A test of the hypothesis that the residuals are white noise can be
obtained using Kolomogorov-Smirnov statistics.
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Quantitative measures for the diagnostics

• Diagnostics 2 and 3: the length of the cumulative periodogram and the
number of samples outside the 95% confidence band.

• Diagnostic 1: residual norm-squared.

These quantitative diagnostics are used in conjunction with plots of the
residual vector, its periodogram, and its cumulative periodogram.
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Some history

• Rust (2000) suggested choosing a parameter that passed all three of the
diagnostics given above.

• Later Hansen, Kilmer and Kjeldsen (2006) proposed choosing the
parameter by either of two methods:

– Choosing the most regularized solution estimate for which the
cumulative periodogram lies within the 95% confidence interval.

– Minimizing the sum of the absolute values of the difference between
components of c and the straight line passing through the origin with
slope 2/NT .

Both methods tend to undersmooth.

• Mead and Renaut (2007) used distribution properties of the residual to
choose regularization parameters.
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Optimization and Validation using periodograms
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Applying the diagnostics to the true solution of the modified Phillips
problem
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Applying the diagnostics to the least squares solution of the modified
Phillips problem

The least squares solution is not reasonable:

• ‖r̂‖2 = 43.01, which is outside the ±2σ confidence interval
[251.02, 348.98], so Diagnostic 1 is violated.

• The components of the residual r̂ do not look like samples from a
N(0, 1) distribution, so Diagnostic 2 is violated.

• By considering plots of the periodogram and cumulative periodogram
we see that Diagnostic 3 is violated.
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Results for Tikhonov Regularization, L-curve parameter choice
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Diagnostics for various choices of λ

Method λ
∑

(b−Ax̃)2i %(ck ∈ B95) Length{c} |∆x|rms

1 L-curve 1.61 177.3 48.4 1.1982 0.12131
2 GCV 13.27 214.1 62.3 1.2004 0.01271
3 Trial λ 19.20 233.1 95.3 1.1991 0.00948
4 Trial λ 20.00 236.8 99.1 1.1992 0.00925
5 Trial λ 22.00 247.5 100.0 1.1998 0.00880
6 Trial λ 24.00 260.7 100.0 1.2014 0.00853
7 Trial λ 26.00 276.9 100.0 1.2040 0.00841
8 Trial λ 27.00 286.3 96.9 1.2057 0.00839
9 Trial λ 28.00 296.6 87.5 1.2076 0.00841

10 Trial λ 29.00 307.9 83.9 1.2098 0.00844
11 Trial λ 30.00 320.2 76.8 1.2123 0.00850
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Solution plots: GCV, L-curve, Ours

Results similar (but not as
good) for TSVD.
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Automating the Residual Periodogram Diagnostics

We have seen that the plots of the residual vector, its periodogram, and its
cumulative periodogram, in conjunction with the three diagnostics lead to
good choices of a regularization parameter, and we advise their use
whenever possible.

However, in some circumstances (e.g., real-time applications), it is not
feasible to choose the parameter manually, so it is also important to have
automatic procedures.

52



There are several ways in which the periodogram can be used:

• Minimize the length of the cumulative periodogram.

• Minimize the number of points of the cumulative periodogram that lie
outside the 95% confidence limits.

• Choose the smallest amount of regularization that places 95% of the
points of the cumulative periodogram inside the confidence limits.

• Minimize the distance between the cumulative periodogram and the line
through the origin with slope 2/NT , using either the 1-, 2-, or ∞-norm
to measure distance.

• Choose a value for which the maximum magnitude element in the
periodogram is not significantly bigger than expected.

It is also a good idea to restrict our choice to one which puts the norm of
the residual within 2 standard deviations of its expected value m
(Diagnostic 1).

53



A sample automation

We experiment with last of the options for using the periodogram, by
computing the ratio of the largest value to the average value.

The distribution of this quantity has been studied by Fisher and we chose
the least amount of regularization for which the probability of a sample
from this distribution being larger than our ratio was at least 5%.
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Results on Some Standard Test Problems

We tested several parameter choice methods on some standard test
problems taken from the Matlab Regularization Tools: Baart, Foxgood,
Heat, Ilaplace, Phillips, and Shaw.

We generated 100 white noise samples for each of the six problems with
standard deviation equal to 0.001 times the norm of the right-hand side,
and used m = n = 256.

The table indicates the number of problems for which the relative error in
the regularized solution xλ was less than 20%.

PFT Discr. GCV L-Curve HKK Optimal
579 419 495 409 594 600

(97%) (70%) (83%) (68%) (99%) (100%)
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Validation using Confidence Images

Statistical framework:

• Assume that the noise η is normally distributed, mean zero, standard
deviation S.

• Note that the pixel values are constrained to be nonnegative, and also
have upper bounds.
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Theorem: The probability that xi, a component of x, is contained in the
interval [`i, ui] is greater than or equal to α, where

`i = min{xi : ‖Ax− b‖S ≤ µ, x ≥ 0} ,

ui = max{xi : ‖Ax− b‖S ≤ µ, x ≥ 0} ,

β = min
x

‖Ax− b‖2
S ,

µ2 = β + γ2 ,

α =

∫ γ2

0

χ2(ρ)dρ ,

and χ2 is the probability density function for the chi-squared distribution
with the number of degrees of freedom equal to the rank of A.

These confidence intervals also have joint probability α.

(Note: There is also a non-parametric form of the theorem.)
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Therefore, confidence intervals for p pixel values can be computed, but at
the cost of solving 2p constrained least squares problems.

Expensive, but possible for modestly-sized subimages.
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How to display confidence intervals

Suppose we solve a 1-dimensional problem and estimate the solution as:
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Then we draw one conclusion if the confidence intervals are:
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... and a different one if the intervals are:
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How to display confidence images

But, once we compute upper and lower bounds on each pixel, how do we
display that information in a useful way?

Idea: the twinkle algorithm.

Display a sequence of images, each one having a pixel value chosen
uniformly from the interval [`i, ui].

Features that are persistent throughout the display have probability at least
α of being real.

Features that flicker due to wide confidence intervals quite possibly are
artifacts.
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An example of Confidence Images: Motion blur

Consider the image taken by a speed-limit-enforcing camera.

The image may be contaminated by motion blur, so we investigate the
uncertainties involved in processing such images.

We used a digital camera to image a stationary white van. We applied a
vertical blur, spreading each pixel to the adjacent 19 pixels, and then added
a noise image with each component chosen from a normal distribution and
with the norm of the noise equal to 6x10−5 times the norm of the image.

We then cropped the image to size 36 x 66, to isolate the license plate.
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Original subimage Blurred subimage

Reconstructed subimage, using [0,1] boundsReconstructed subimage, using nonnegativity

Confidence image, using [0,1] bounds Confidence image, using [0,1] bounds

licensedemo
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Example

This example uses the astronomical image presented earlier.

• The blurring function A is spacially varying, but we don’t have exact
coefficients for it. Instead, we approximate it as either spacially constant
over the entire picture, or spacially constant over each of the four
quadrants of the picture, and use measured values for the coefficients.

• We reconstruct the entire image using preconditioned conjugate
gradients.

• Then we focus on a subimage containing a bright object and use
nonnegativity constraints to try to get a more reliable reconstruction.
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Satellite data, with restoration using one PSF in PCG
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Subimages, using one PSF for PCG
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Mesh plot of subimages, using one PSF for PCG.

0
10

20

0

10

20
0

100

200

300

mesh of true subimage

0
10

20

0

10

20
0

100

200

300

mesh of blurred subimage

0
10

20

0

10

20
0

100

200

300

mesh plot of cg restored submiage

0
10

20

0

10

20
0

100

200

300

mesh plot of nnls restored subimage

68



Satellite data, with restoration using four PSFs in PCG.
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Subimages, using four PSFs for PCG
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Mesh plot of subimages, using four PSFs for PCG.
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Bottom line

By working with subimages, we can afford to do better reconstructions.

But, more importantly, we can afford to compute confidence intervals for
the pixel values.

72



Conclusions

• We have shown how to use optimization in order to produce high-quality
reconstructions.

• We have used confidence images to provide information on the reliability
of the reconstructions.

• We have provided the means to compute confidence intervals using
Braketls, and to display confidence images using Twinkle.
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