Archive Graphic

Please Note: The content on this page is not maintained after the colloquium event is completed.  As such, some links may no longer be functional.

Download Adobe PDF Reader

Lise GetoorLise Getoor
"Finding the information in information networks"

Wednesday, February 6, 2008
Building 3 Auditorium - 3:30 PM
(Refreshments at 3:00 PM)

Within the machine learning and data mining communities, there has been a growing interest in learning structured models from input data that is itself structured. Graph identification refers to methods that transform observational data described as a noisy, input graph into an inferred output graph. Examples include inferring organizational hierarchies from social network data, identifying gene regulatory networks from protein-protein interactions, and understanding visual scenes based on inferred relationships among image parts. The key processes in graph identification are: entity resolution, link prediction, and collective classification. I will overview algorithms for these tasks, discuss the need for integrating the results to solve the overall problem collectively, and show how these methods are relevant to foundational problems in AI such as knowledge representation, reformulation, and reasoning.

Lise Getoor is an assistant professor in the Computer Science Department at the University of Maryland, College Park. She received her PhD from Stanford University in 2001. Her current work includes research on link mining, statistical relational learning and representing uncertainty in structured and semi-structured data. She has published numerous articles in machine learning, data mining,database, and AI forums. She is an action editor for the Machine Learning Journal, is a JAIR associate editor, has been a member of AAAI Executive council, and has served on a variety of program committees including AAAI, ICML, IJCAI, KDD, SIGMOD, UAI, VLDB, and WWW.

IS&T Colloquium Committee Host: Patrick Coronado